
Lecture 04: Probability and Inference

Bill Perry

Lecture 4: Probability and Statistical Inference
• Review of probability distributions
• Standard normal distribution and Z-scores
• Standard error and confidence intervals
• Statistical inference fundamentals
• Hypothesis testing principles

Practice Exercise 1: Exploring the Grayling Dataset
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💡 Practice Exercise 1: Exploring the Grayling Dataset

Let’s explore the Arctic grayling data from lakes I3 and I8. Use the grayling_df data frame to create basic
summary statistics.

# Write your code here to explore the basic structure of the data
# also note plottig a box plot is really useful
str(grayling_df)

spc_tbl_ [168 × 5] (S3: spec_tbl_df/tbl_df/tbl/data.frame)
 $ site     : num [1:168] 113 113 113 113 113 113 113 113 113 113 ...
 $ lake     : chr [1:168] "I3" "I3" "I3" "I3" ...
 $ species  : chr [1:168] "arctic grayling" "arctic grayling" "arctic grayling" "arctic
grayling" ...
 $ length_mm: num [1:168] 266 290 262 275 240 265 265 253 246 203 ...
 $ mass_g   : num [1:168] 135 185 145 160 105 145 150 130 130 71 ...
 - attr(*, "spec")=
  .. cols(
  ..   site = col_double(),
  ..   lake = col_character(),
  ..   species = col_character(),
  ..   length_mm = col_double(),
  ..   mass_g = col_double()
  .. )
 - attr(*, "problems")=<externalptr>

summary(grayling_df)

      site         lake             species            length_mm
 Min.   :113   Length:168         Length:168         Min.   :191.0
 1st Qu.:113   Class :character   Class :character   1st Qu.:270.8
 Median :118   Mode  :character   Mode  :character   Median :324.5
 Mean   :116                                         Mean   :324.5
 3rd Qu.:118                                         3rd Qu.:377.0
 Max.   :118                                         Max.   :440.0

     mass_g
 Min.   : 53.0
 1st Qu.:151.2
 Median :340.0
 Mean   :351.2
 3rd Qu.:519.5
 Max.   :889.0
 NA's   :2

Lecture 4: Probability Distributions
Probability Distribution Functions
• A probability distribution describes the probability of different outcomes in an experiment
• We’ve seen histograms of observed data
• Theoretical distributions help us model and understand real-world data
• We will focus on a standard normal distribution and a t distribution
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Lecture 4: The Standard Normal Distribution
The standard normal distribution is crucial for understanding statistical inference:

• Has mean (μ) = 0 and standard deviation (σ) = 1
• Symmetrical bell-shaped curve
• Area under the curve = 1 (total probability)
• Approximately:

‣ 68% of data within ±1σ of the mean
‣ 95% of data within ±2σ of the mean - really 1.96σ
‣ 99.7% of data within ±3σ of the mean

Z-scores allow us to convert any normal distribution to the standard normal distribution.

3



Practice Exercise 2: Calculating Z-scores

💡 Practice Exercise 2: Calculating Z-scores

Let’s practice converting raw values to Z-scores using the Arctic grayling data.

# Calculate the mean and standard deviation of fish lengths
mean_length <- mean(grayling_df$length_mm, na.rm = TRUE)
sd_length <- sd(grayling_df$length_mm, na.rm = TRUE)

# Calculate Z-scores for fish lengths
grayling_df <- grayling_df %>%
  mutate(z_score = (length_mm - mean_length) / sd_length)

# View the first few rows with Z-scores
head(grayling_df)

# A tibble: 6 × 6
   site lake  species         length_mm mass_g z_score
  <dbl> <chr> <chr>               <dbl>  <dbl>   <dbl>
1   113 I3    arctic grayling       266    135  -0.900
2   113 I3    arctic grayling       290    185  -0.531
3   113 I3    arctic grayling       262    145  -0.961
4   113 I3    arctic grayling       275    160  -0.761
5   113 I3    arctic grayling       240    105  -1.30
6   113 I3    arctic grayling       265    145  -0.915

Z-score Results
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# What proportion of fish are within 1 standard deviation of the mean?
within_1sd <- sum(abs(grayling_df$z_score) <= 1, na.rm = TRUE) / sum(!
is.na(grayling_df$z_score))
cat("Proportion within 1 SD:", round(within_1sd * 100, 1), "%\n")

Proportion within 1 SD: 64.3 %

Lecture 4: Standard normal distribution - Fish Data
You want to know things about this population like

• probability of a fish having a certain length (e.g., > 300 mm)
• Can solve this by integrating under curve
• But it is tedious to do every time
• Instead

‣ we can use the standard normal distribution (SND)

# A tibble: 1 × 1
  mean_length
        <dbl>
1        266.

Lecture 4: Standard normal distribution properties
Standard Normal Distribution

• “benchmark” normal distribution with µ = 0, σ = 1
• The Standard Normal Distribution is defined so that:

‣ ~68% of the curve area within +/- 1 σ of the mean,

‣ ~95% within +/- 2 σ of the mean,
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‣ ~99.7% within +/- 3 σ of the mean

*remember σ = standard deviation

Lecture 4: Using Z-tables
Areas under curve of Standard Normal Distribution

• Have been calculated for a range of sample sizes
• Can be looked up in z-table
• No need to integrate
• Any normally distributed data can be standardized

‣ transformed into the standard normal distribution
‣ a value can be looked up in a table
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Lecture 4: Z-score Formula
Done by converting original data points to z-scores

• Z-scores calculated as:

Z = 𝑋𝑖−𝜇
𝜎

• z = z-score for observation
• xi = original observation
• µ = mean of data distribution
• σ = SD of data distribution

So lets do this for a fish that is 300mm long and guess the probability of catching something larger

z = (300 - 265.61)/28.3 = 1.215194

i3_stats <- gray_i3_df %>%
  summarize(
    mean_length = round(mean(length_mm, na.rm = TRUE), 2),
    sd_length = sd(length_mm, na.rm = TRUE),
    n = sum(!is.na(length_mm)),
    se_length = round(sd_length / sqrt(sum(!is.na(length_mm))), 2),
    .groups = "drop"
  )

# Display the results
i3_stats
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# A tibble: 1 × 4
  mean_length sd_length     n se_length
        <dbl>     <dbl> <int>     <dbl>
1        266.      28.3    66      3.48

Lecture 4: Z-score Example
Done by converting original data points to z-scores

• Z-scores calculated as:

Z = 𝑋𝑖−𝜇
𝜎

• z = z-score for observation
• xi = original observation
• µ = mean of data distribution
• σ = SD of data distribution

So lets do this for a fish that is 320mm long and guess the probability of catching something larger

z = (320 - 265.61)/28.3 = 1.92

or .9726 in table or 97.3% is the area left of the curve and

100 - 97.3 = 2.7% or 2.7% of fish are expected to be longer

Lecture 4: Sampling a population - Std Error
The standard error of the mean (SEM) tells us how precise our sample mean is as an estimate of the population
mean.

Standard Error Formula:

𝑆𝐸𝑌 ‾ =
𝑠

√
𝑛

Where:

• 𝑠 is the sample standard deviation
• 𝑛 is the sample size

Key properties:

• SEM decreases as sample size increases
• SEM is used to construct confidence intervals
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• SEM measures the precision of the sample mean

Practice Exercise 5: Sampling Distributions
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💡 Practice Exercise 5: Sampling Distributions

Let’s explore how sample size affects our estimates by taking samples of different sizes:

# Set seed for reproducibility
set.seed(456)

# Create samples of different sizes
small_sample <- grayling_df %>% sample_n(5)
medium_sample <- grayling_df %>% sample_n(30)
large_sample <- grayling_df %>% sample_n(125)

# Calculate mean and standard error for each sample
small_mean <- mean(small_sample$length_mm, na.rm = TRUE)
small_se <- sd(small_sample$length_mm, na.rm = TRUE) / sqrt(10)

medium_mean <- mean(medium_sample$length_mm, na.rm = TRUE)
medium_se <- sd(medium_sample$length_mm, na.rm = TRUE) / sqrt(30)

large_mean <- mean(large_sample$length_mm, na.rm = TRUE)
large_se <- sd(large_sample$length_mm, na.rm = TRUE) / sqrt(100)

# Create a data frame with the results
results <- data.frame(
  Sample_Size = c(10, 30, 100),
  Mean = c(small_mean, medium_mean, large_mean),
  SE = c(small_se, medium_se, large_se)
)

# Display the results
results

  Sample_Size    Mean        SE
1          10 302.000 26.607330
2          30 319.200 12.082989
3         100 323.328  6.478149

What do you observe about the standard error as sample size increases? Why does this happen?

Lecture 4: Estimating µ - population mean
Every sample gives slightly different estimate of µ
• Can take many samples and calculate means
• Plot the frequency distribution of means
• Get the “sampling distribution of means”

3 important properties:
• Sampling distribution of means (SDM) from normal population will be normal
• Large Sampling distribution of means from any population will be normal (Central Limit Theorem)
• The mean of Sampling distribution of means will equal µ or the mean
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Lecture 4: Standard Error Properties
Given above
• can estimate the standard deviation of sample means

• “Standard error of sample mean”

• How good is your estimate of population mean? (based on the sample collected)

• quantifies how much the sample means are expected to vary from samples

• gives an estimate of the error associated with using 𝑦‾ to estimate 𝜇…
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Lecture 4: Standard Error and Sample Size
Notice: - 𝑠𝑦‾  depends on - sample s (standard deviation) - sample n - (𝑠𝑦‾ = 𝑠√

𝑛 )

How and why? - Decreases with sample n - number - increases with sample s - standard deviation

• Large sample, low s = greater confidence in estimate of 𝜇
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Lecture 4: Standard Error of the Mean
The standard error of the mean (SEM) tells us how precise our sample mean is as an estimate of the population
mean.

Standard Error Formula:

𝑆𝐸𝑌 ‾ =
𝑠

√
𝑛

Where:

• 𝑠 is the sample standard deviation
• 𝑛 is the sample size

Key properties:

• SEM decreases as sample size increases
• SEM is used to construct confidence intervals
• SEM measures the precision of the sample mean
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Lecture 4: Confidence Intervals - Basic Formula
A confidence interval is a range of values that is likely to contain the true population parameter.

95% Confidence Interval Formula:

95% CI = 𝑦‾ ± 𝑧 ⋅
𝜎

√
𝑛

Where:

• ȳ is the sample mean
• 􏿿 is the sample size
• σ is the population standard deviation
• z is the z-value corresponding the probability of the CI

Lecture 4: Confidence Intervals - Interpretation
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A confidence interval is a range of values that is likely to contain the true population parameter.

Interpretation: If we were to take many samples and calculate the 95% CI for each, about 95% of these intervals
would contain the true population mean.

Common misinterpretation: “There is a 95% probability that the true mean is in this interval.”

• Interpret 95% CI to mean:
‣ Range of values that contains µ (population mean) with 95% probability

• More correctly:
‣ If we took 100 samples from population
‣ calculate a CI from each
‣ 95 of the 100 CIs will contain the true population mean - µ

Lecture 4: Compare the SE and CI plots
Lets compare what the two plots look like near each other
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Practice Exercise 3: Standard Error and CI
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💡 Practice Exercise 3: Calculating Standard Error and Confidence Intervals

Calculate the standard error and 95% confidence interval for the mean length of Arctic grayling in each lake.

# Calculate the standard error and confidence intervals by lake
ci_results <- grayling_df %>%
  group_by(lake) %>%
  summarize(
    mean_length = round(mean(length_mm, na.rm = TRUE), 2),
    sd_length = sd(length_mm, na.rm = TRUE),
    n = sum(!is.na(length_mm)),
    se_length = round(sd_length / sqrt(n), 2),
    ci = round(1.96 * se_length, 2),
    ci_lower = round(mean_length - 1.96 * se_length, 2),
    ci_upper = round(mean_length + 1.96 * se_length, 2),
    .groups = "drop"
  )

# Display the results
ci_results

# A tibble: 2 × 8
  lake  mean_length sd_length     n se_length    ci ci_lower ci_upper
  <chr>       <dbl>     <dbl> <int>     <dbl> <dbl>    <dbl>    <dbl>
1 I3           266.      28.3    66      3.48  6.82     259.     272.
2 I8           363.      52.3   102      5.18 10.2      352.     373.

What do these confidence intervals tell us about the difference between lakes?

Lecture 4: When Population σ is Unknown
In the more typical case DON’T know the population σ

• estimate it from the samples when don’t know the population σ
• and when sample size is <~30)
• can’t use the standard normal (z) distribution

Instead, we use Student’s t distribution
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Lecture 4: Understanding t-distribution
When sample sizes are small, the t-distribution is more appropriate than the normal distribution.

• Similar to normal distribution but with heavier tails
• Shape depends on degrees of freedom (df = n-1)
• With large df (>30), approaches the normal distribution
• Used for:

‣ Small sample sizes
‣ When population standard deviation is unknown
‣ Calculating confidence intervals
‣ Conducting t-tests

Practice Exercise 4: Using the t-distribution
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💡 Practice Exercise 4: Using the t-distribution

Let’s compare confidence intervals using the normal approximation (z) versus the t-distribution for our fish
data.

# Calculate CI using both z and t distributions for a smaller subset
small_sample <- grayling_df %>% 
  filter(lake == "I3") %>% 
  slice_sample(n = 10)

# Calculate statistics
sample_mean <- mean(small_sample$length_mm)
sample_sd <- sd(small_sample$length_mm)
sample_n <- nrow(small_sample)
sample_se <- sample_sd / sqrt(sample_n)

# Calculate confidence intervals
z_ci_lower <- sample_mean - 1.96 * sample_se
z_ci_upper <- sample_mean + 1.96 * sample_se

# For t-distribution, get critical value for 95% CI with df = n-1
t_crit <- qt(0.975, df = sample_n - 1)
t_ci_lower <- sample_mean - t_crit * sample_se
t_ci_upper <- sample_mean + t_crit * sample_se

# Display results
cat("Mean:", round(sample_mean, 1), "mm\n")

Mean: 255.3 mm

cat("Standard deviation:", round(sample_sd, 2), "mm\n")

Standard deviation: 26.26 mm

cat("Standard error:", round(sample_se, 2), "mm\n")

Standard error: 8.31 mm

cat("95% CI using z:", round(z_ci_lower, 1), "to", round(z_ci_upper, 1), "mm\n")

95% CI using z: 239 to 271.6 mm

cat("95% CI using t:", round(t_ci_lower, 1), "to", round(t_ci_upper, 1), "mm\n")

95% CI using t: 236.5 to 274.1 mm

cat("t critical value:", round(t_crit, 3), "vs z critical value: 1.96\n")

t critical value: 2.262 vs z critical value: 1.9619



Student’s t-distribution Formula
To calculate CI for sample from “unknown” population:

CI = 𝑦‾ ± 𝑡 ⋅ 𝑠√
𝑛

Where:

• ȳ is sample mean
• 􏿿 is sample size
• s is sample standard deviation
• t t-value corresponding the probability of the CI
• t in t-table for different degrees of freedom (n-1)

Lecture 4: Student’s t-distribution Table
Here is a t-table

• Values of t that correspond to probabilities
• Probabilities listed along top
• Sample dfs are listed in the left-most column
• Probabilities are given for one-tailed and two-tailed “questions”

Lecture 4: One-tailed Questions
One-tailed questions: area of distribution left or (right) of a certain value
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• n=20 (df=19) - 90% of the observations found left
• t= 1.328 (10% are outside)

Lecture 4: Two-tailed Questions
Two-tailed questions refer to area between certain values

• n= 20 (df=19), 90% of the observations are between
• t=-1.729 and t=1.729 (10% are outside)

Lecture 4: t-distribution CI Example
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Let’s calculate CIs again:

Use two-sided test

• 95% CI Sample A: = 272.8 ± 2.262 * (37.81/(9^0.5)) = 1.650788
• The 95% CI is between 244.3 and 301.3
• “The 95% CI for the population mean from sample A is 272.8 ± 28.5”

Lecture 4: Intro to Hypothesis Testing
Hypothesis testing is a systematic way to evaluate research questions using data.

Key components:

1. Null hypothesis (H₀): Typically assumes “no effect” or “no difference”

2. Alternative hypothesis (Hₐ): The claim we’re trying to support

3. Statistical test: Method for evaluating evidence against H₀

4. P-value: Probability of observing our results (or more extreme) if H₀ is true

5. Significance level (α): Threshold for rejecting H₀, typically 0.05

Decision rule: Reject H₀ if p-value < α
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Lecture 4: Hypothesis Testing in Original Scale
Hypothesis testing is a systematic way to evaluate research questions using data.

Key components:

1. Null hypothesis (H₀): Typically assumes “no effect” or “no difference”

2. Alternative hypothesis (Hₐ): The claim we’re trying to support

3. Statistical test: Method for evaluating evidence against H₀

4. P-value: Probability of observing our results (or more extreme) if H₀ is true

5. Significance level (α): Threshold for rejecting H₀, typically 0.05

Decision rule: Reject H₀ if p-value < α
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Practice Exercise 5: One-Sample t-Test
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💡 Practice Exercise 5: Lets practice a One-Sample t-Test

Let’s perform a one-sample t-test to determine if the mean fish length in Toolik Lake differs from 50 mm:

# get only lake I3
i3_df <- grayling_df %>% filter(lake=="I3")

# what is the mean
i3_mean <- mean(i3_df$length_mm, na.rm=TRUE)
cat("Mean:", round(i3_mean, 1), "mm\n")

Mean: 265.6 mm

# Perform a one-sample t-test
t_test_result <- t.test(i3_df$length_mm, mu = 260)

# View the test results
t_test_result

    One Sample t-test

data:  i3_df$length_mm
t = 1.6091, df = 65, p-value = 0.1124
alternative hypothesis: true mean is not equal to 260
95 percent confidence interval:
 258.6481 272.5640
sample estimates:
mean of x
 265.6061

Interpret this test result by answering these questions:

1. What was the null hypothesis?
2. What was the alternative hypothesis?
3. What does the p-value tell us?
4. Should we reject or fail to reject the null hypothesis at α = 0.05?
5. What is the practical interpretation of this result for fish biologists?

Practice Exercise 6: Formulating Hypotheses
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💡 Practice Exercise 6: Formulating Hypotheses

For the following research questions about Arctic grayling, write the null and alternative hypotheses:

1. Are fish in Lake I8 longer than fish in Lake I3?
2. Is the mean length of Arctic grayling in these lakes different from 300 mm?
3. Is there a relationship between fish length and mass?

# Let's test one of these hypotheses: Are fish in Lake I8 longer than fish in Lake I3?

# Perform an independent t-test
t_test_result <- t.test(length_mm ~ lake, data = grayling_df, 
                       alternative = "less")  # H₀: μ_I3 ≥ μ_I8, H₁: μ_I3 < μ_I8

# Display the results
t_test_result

    Welch Two Sample t-test

data:  length_mm by lake
t = -15.532, df = 161.63, p-value < 2.2e-16
alternative hypothesis: true difference in means between group I3 and group I8 is less
than 0
95 percent confidence interval:
      -Inf -86.66138
sample estimates:
mean in group I3 mean in group I8
        265.6061         362.5980

Based on this t-test, what can we conclude about the difference in fish length between the two lakes?

Lecture 4: Understanding P-values
A p-value is the probability of observing the sample result (or something more extreme) if the null hypothesis
is true.

Common interpretations: - p < 0.05: Strong evidence against H₀ - 0.05 ≤ p < 0.10: Moderate evidence against
H₀ - p ≥ 0.10: Insufficient evidence against H₀

Common misinterpretations: - p-value is NOT the probability that H₀ is true - p-value is NOT the probability
that results occurred by chance - Statistical significance ≠ practical significance
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Lecture 4: Type I and Type II Errors
When making decisions based on hypothesis tests, two types of errors can occur:

Type I Error (False Positive) - Rejecting H₀ when it’s actually true - Probability = α (significance level) - “Finding
an effect that isn’t real”

Type II Error (False Negative) - Failing to reject H₀ when it’s actually false - Probability = β - “Missing an effect
that is real”

Statistical Power = 1 - β - Probability of correctly rejecting a false H₀ - Increases with: - Larger sample size -
Larger effect size - Lower variability - Higher α level
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Practice Exercise 7: Interpreting Errors and Power
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💡 Practice Exercise 6: Interpreting P-values and Errors

Given the following scenarios, identify whether a Type I or Type II error might have occurred:

1. A researcher concludes that a new fishing regulation increased grayling size, when in fact it had no effect.

2. A study fails to detect a real decline in grayling population due to warming water, concluding there was
no effect.

3. Let’s calculate the power of our t-test to detect a 30 mm difference in length between lakes:

# Calculate power for detecting a 30 mm difference
# First determine parameters
lake_I3 <- grayling_df %>% filter(lake == "I3")
lake_I8 <- grayling_df %>% filter(lake == "I8") 

n1 <- nrow(lake_I3)
n2 <- nrow(lake_I8)
sd_pooled <- sqrt((var(lake_I3$length_mm) * (n1-1) + 
                  var(lake_I8$length_mm) * (n2-1)) / 
                  (n1 + n2 - 2))

# Calculate power
effect_size <- 30 / sd_pooled  # Cohen's d
df <- n1 + n2 - 2
alpha <- 0.05
power <- power.t.test(n = min(n1, n2), 
                     delta = effect_size,
                     sd = 1,  # Using standardized effect size
                     sig.level = alpha,
                     type = "two.sample",
                     alternative = "two.sided")

# Display results
power

     Two-sample t test power calculation

              n = 66
          delta = 0.6741298
             sd = 1
      sig.level = 0.05
          power = 0.9702076
    alternative = two.sided

NOTE: n is number in *each* group

Lecture 4: Summary
Key concepts covered:

1. Probability distributions model random phenomena
• Normal distribution is especially important
• Z-scores standardize measurements

2. Standard error measures precision of estimates
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• Decreases with larger sample sizes
• Used to construct confidence intervals

3. Confidence intervals express uncertainty
• Provide plausible range for parameters
• 95% CI: mean ± 1.96 × SE

4. Hypothesis testing evaluates claims
• Null vs. alternative hypotheses
• P-values quantify evidence against H₀
• Consider both statistical and practical significance
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