03_Class_Activity

Bill Perry

In class activity 4:

What did we do last time in activity 3?

- Setting up a project and variable names and code names
- How to use the pipe command %>%
- How to create descriptive statistics of a sample

```
p_df %>%
  summarize(
    mean_length = mean(length_mm, na.rm = TRUE),
    sd_length = sd(length_mm, na.rm = TRUE),
    n_length = sum(!is.na(length_mm)))
```

• More graphs...

```
ggplot(data = p_df, aes(x=length_mm, fill = wind)) +
  geom_histogram( binwidth = 2,
# sets the width in units of the bins - try different nubmers
  position = position_dodge2(width = 0.5))
```


• What questions do you have and what is unclear - what did not work so far when you started the homework?

Introduction

In this active learning module, we'll explore real data from fish populations in Alaska. We'll focus on understanding:

- How to create and interpret frequency distributions
- How sample size affects our view of a population
- · How distributions differ among lakes

We'll use the tidyverse package for data manipulation and visualization.

Setup

First, let's load the packages we need and the dataset:

```
# # Install the patchwork package if needed

# install.packages("patchwork")
library(patchwork)
library(skimr)
library(tidyverse)

# Read in the data file
s_df <- read_csv("data/sculpin.csv")

# Look at the first few rows
head(s_df)</pre>
```

```
# A tibble: 6 \times 5
  site lake species
                         length mm mass g
 <dbl> <chr> <chr>
                            <dbl> <dbl>
1 146 E 01 slimy sculpin
                               53 1.25
2 146 E 01 slimy sculpin
                               61 1.9
3 146 E 01 slimy sculpin
                               53 1.75
4 146 E 01 slimy sculpin
                               77 4.25
5 146 E 01 slimy sculpin
                               45 0.9
6 146 E 01 slimy sculpin
                               48 0.9
```

Basic Data Summary

Let's first check what lakes are in our dataframe:

```
# Get a list of unique lakes
unique(s_df$lake)
```

```
[1] "E 01" "E 05" "NE 12" "NE 14" "S 06" "S 07" "Toolik"
```

How many fish do we have from each lake?

```
# Count observations by lake
s_df %>%
  group_by(lake) %>%
  summarize(sculpin_n = n())
```

```
6 S 07 73
7 Toolik 287
```

```
# Count observations by lake
s_df %>%
group_by(lake) %>%
summarize(sculpin_n = sum(!is.na(length_mm)))
```

```
# A tibble: 7 \times 2
  lake
         sculpin n
  <chr>
             <int>
1 E 01
                79
2 E 05
               14
3 NE 12
               180
4 NE 14
                37
5 S 06
               132
6 S 07
                73
7 Toolik
               208
```

Part 1: Creating Frequency Distributions

Basic Histograms

A histogram shows how many observations fall into certain ranges (or "bins").

Let's create a simple histogram of fish lengths from Lake E 01 :

```
# Filter for Toolik Lake and create a histogram
s_df %>%
filter(lake == "E 01") %>%
ggplot(aes(x = length_mm)) +
geom_histogram(binwidth = 2, fill = "blue", alpha = 0.7)
```

Warning: Removed 189 rows containing non-finite outside the scale range
(`stat_bin()`).

Try changing the binwidth parameter to 5 and then to 1. How does the appearance of the histogram change?

```
# Try it here
```

Comparing Lakes

Now let's compare two lakes

Warning: Removed 268 rows containing non-finite outside the scale range (`stat_bin()`).

Warning: Removed 268 rows containing non-finite outside the scale range (`stat_bin()`).

Now let's compare two lakes side by side:

```
# Compare histograms from Toolik and E 01 lakes
s_df %>%
filter(lake %in% c("Toolik", "E 01")) %>%
ggplot(aes(x = length_mm, fill = lake)) +
geom_histogram(binwidth = 2, alpha = 0.7, position = "identity") +
# facet_wrap(~lake, ncol = 1) +
facet_grid(lake~.)
```

Warning: Removed 268 rows containing non-finite outside the scale range $(\dot stat_bin()\dot)$.

• Activity 2

Choose two new lakes to compare. What differences do you notice in their distributions?

Add notes here

Part 2: Sample Size Effects

Let's explore how the sample size affects what we see.

Small vs. Large Samples

We'll randomly select different sample sizes from Toolik Lake:

```
# Set a seed for reproducibility
set.seed(123)
# Create small sample (15 fish)
small_sample <- s_df %>%
 filter(lake == "Toolik") %>%
  sample n(10)
# Create larger sample (50 fish)
larger sample <- s df %>%
 filter(lake == "Toolik") %>%
 sample_n(100)
# Plot both samples
p1 <- small sample %>%
 qqplot(aes(x = length mm)) +
  geom histogram(binwidth = 2, fill = "red", alpha = 0.7) +
  \# coord_cartesian(xlim = c(20,80)) +
 labs(title = "Small Sample (n=15)",
      x = "Length (mm)",
       y = "Count") +
  coord_cartesian(xlim = c(20,80))
p2 <- larger sample %>%
  ggplot(aes(x = length_mm)) +
  geom_histogram(binwidth = 2, fill = "blue", alpha = 0.7) +
  \# coord_cartesian(xlim = c(20,80)) +
  labs(title = "Larger Sample (n=50)",
      x = "Length (mm)",
       y = "Count")
# Display the plots side by side
p1 + p2 +
  plot_layout(ncol = 1)
```

```
Warning: Removed 3 rows containing non-finite outside the scale range (`stat_bin()`).
```

```
Warning: Removed 25 rows containing non-finite outside the scale range
(`stat_bin()`).
```

Small Sample (n=15)

Larger Sample (n=50)

Try changing the sample sizes. What happens when you use very small samples (n=5)? What about larger samples (n=150)?

add code here

```
# Set a seed for reproducibility
set.seed(123)
# Create small sample (15 fish)
small_sample <- s_df %>%
 filter(lake == "Toolik") %>%
  sample n(10) # CHANGE NUMBERS HERE -----
# Create larger sample (50 fish)
larger sample <- s df %>%
 filter(lake == "Toolik") %>%
  sample_n(100) # CHANGE NUMBERS HERE ------
# Plot both samples
p1 <- small sample %>%
 ggplot(aes(x = length_mm)) +
 geom_histogram(binwidth = 2, fill = "red", alpha = 0.7) +
 # coord cartesian(xlim = c(20,80)) +
 labs(title = "Small Sample (n=15)",
      x = "Length (mm)",
      y = "Count") +
  coord cartesian(xlim = c(20,80))
p2 <- larger sample %>%
  ggplot(aes(x = length_mm)) +
  geom_histogram(binwidth = 2, fill = "blue", alpha = 0.7) +
 # coord cartesian(xlim = c(20,80)) +
 labs(title = "Larger Sample (n=50)",
      x = "Length (mm)",
      y = "Count")
# Display the plots side by side
p1 + p2 +
  plot layout(ncol = 1)
```

Warning: Removed 3 rows containing non-finite outside the scale range
(`stat_bin()`).

Warning: Removed 25 rows containing non-finite outside the scale range (`stat bin()`).

Small Sample (n=15)

Part 3: From Histograms to Density Plots

Density plots give us a smoothed version of the histogram:

```
# Create a density plot
s_df %>%
filter(lake == "Toolik") %>%
ggplot(aes(x = length_mm)) +
geom_density(fill = "blue", alpha = 0.5)
```


We can overlay the histogram and the density plot:

Create a density plot comparing multiple lakes. Which lakes have similar distributions? Which ones are different?

Try code here using patchwork or facet_grid

```
#Enter code here#
```

```
# Function to calculate area under density curve
calculate_density_area <- function(data_vector) {</pre>
 # Remove NA values
 data_vector <- data_vector[!is.na(data_vector)]</pre>
 # Calculate density
 dens <- density(data vector)</pre>
 # Calculate area using numeric integration (trapezoidal rule)
 # Area should be approximately 1
 dx <- diff(dens$x)</pre>
 y avg <- (dens y[-1] + dens y[-length(dens y)]) / 2
 area <- sum(dx * y_avg)</pre>
 return(area)
}
# Apply to Toolik lake data
toolik data <- s df %>%
  filter(lake == "Toolik") %>%
  pull(length mm)
area_value <- calculate_density_area(toolik_data)</pre>
# Create plot with calculated area
s df %>%
 filter(lake == "Toolik") %>%
 ggplot(aes(x = length_mm)) +
  geom_density(fill = "blue", alpha = 0.4) +
 geom area(stat = "density", fill = "red", alpha = 0.3) +
 labs(title = "Area Under Probability Density Function = 1",
       subtitle = paste("Calculated area =", round(area_value, 4)),
       x = "Length (mm)",
       y = "Density")
```

Area Under Probability Density

This can be adapted to calculate the area of a subset of the plot

I don't expect you to know or be able to do all of this but is here to play with the code

```
# ----- PART 3: SET INPUT VALUES -----
# change these values to calculate different probabilities
# For this example, let's calculate the probability of fish between 40mm and 60mm
lower_bound <- 80 # change this value</pre>
upper bound <- 90 # change this value
# ----- PART 1: PREPARE THE DATA -----
# Filter data for just one lake to keep it simple for students
toolik fish <- s df %>%
  filter(lake == "Toolik") %>%
  filter(!is.na(length_mm)) # Remove any missing values
# ----- PART 2: CREATE A FUNCTION TO CALCULATE PROBABILITY -----
# This function calculates the probability of finding a fish with length between
# lower_bound and upper_bound using the empirical distribution of our data
calculate probability <- function(data vector, lower bound, upper bound) {</pre>
 # First, we create a density object from our data
 dens <- density(data vector)</pre>
 # Find indices of x-values that fall within our bounds
  indices <- which(dens$x >= lower bound & dens$x <= upper bound)
 # If we have no points in the range, return 0
 if(length(indices) <= 1) {</pre>
    return(0)
 }
 # Get x and y values within our bounds
 x_values <- dens$x[indices]</pre>
 y values <- dens$y[indices]</pre>
 # Calculate the area using the trapezoidal rule
  # (average height × width) for each segment, then sum all segments
 widths <- diff(x values)</pre>
  avg_heights <- (y_values[-1] + y_values[-length(y_values)]) / 2</pre>
```

```
area in_range <- sum(widths * avg_heights)</pre>
 # Return the calculated probability
 return(area in range)
}
# ----- PART 4: CALCULATE THE PROBABILITY -----
# Calculate the probability for the specified range
probability <- calculate probability(toolik fish$length mm, lower bound, upper bound)</pre>
# Calculate the total area to show that the complete distribution sums to approximately 1
total area <- calculate probability(toolik fish$length mm,
                                   min(toolik fish$length mm),
                                   max(toolik fish$length mm))
# ----- PART 5: CREATE THE VISUALIZATION -----
# Create density data for the highlighting
density data <- density(toolik fish$length mm)</pre>
density_df <- data.frame(x = density_data$x, y = density_data$y)</pre>
# Create a subset for the area of interest
highlight df <- density df %>%
  filter(x >= lower_bound & x <= upper_bound)</pre>
# Create the plot
ggplot(toolik fish, aes(x = length mm)) +
 # First, plot the overall density curve in light blue
  geom_density(fill = "lightblue", alpha = 0.5) +
  # Then highlight our region of interest in dark red
  geom area(data = highlight df, aes(x = x, y = y),
            fill = "darkred", alpha = 0.7) +
  # Add vertical lines to clearly mark the boundaries
  geom vline(xintercept = lower bound, linetype = "dashed", color = "red") +
  geom_vline(xintercept = upper_bound, linetype = "dashed", color = "red") +
  # Add informative labels
  labs(
    title = "Probability Distribution of Fish Lengths",
    subtitle = paste0("Probability of fish between ", lower bound,
                     " and ", upper bound, " mm = ",
                     round(probability * 100, 1), "%"),
    caption = paste("Total area under the curve =", round(total_area, 3)),
   x = "Fish Length (mm)",
    y = "Density"
  ) +
  # Add text annotations to explain the areas
  annotate("text", x = (lower_bound + upper_bound)/2,
           y = max(density(toolik fish$length mm)$y) * 0.7,
           label = paste0("Area = ", round(probability, 3)),
           color = "white", size = 4) +
  # Make the plot look nicer
  theme minimal() +
  theme(
```

```
plot.title = element_text(face = "bold"),
plot.subtitle = element_text(color = "darkred")
)
```

Probability Distribution of F

Total area under the curve = 0.983

Part 4: Summary Statistics - descriptive statistics

Let's calculate basic summary statistics for each lake:

```
# Calculate mean, standard deviation, and sample size by lake
s_df %>%
group_by(lake) %>%
summarize(
    mean_length = mean(length_mm),
    sd_length = sd(length_mm),
    count = n(),
    .groups = "drop"
) %>%
arrange(desc(count))
```

```
# A tibble: 7 \times 4
        mean_length sd_length count
  lake
  <chr>
               <dbl>
                         <dbl> <int>
                NA
                          NA
1 Toolik
                                 287
2 E 01
                NA
                          NA
                                 268
3 NE 12
                49.8
                          15.2
                                 180
4 S 06
                54.0
                          10.9
                                 132
5 E 05
                NA
                          NA
                                  75
6 S 07
                55.6
                          12.7
                                  73
7 NE 14
                47.3
                          10.5
                                  37
```

WOAH - what happened there - there are NA values in the data

you need to either remove missing values or you can do that in the formulas

What is the advantage to manually removing or doing it in formulas?

```
# Calculate mean, standard deviation, and sample size by lake
sculpin_stats_df <- s_df %>%
  group_by(lake) %>%
summarize(
  mean_length = mean(length_mm, na.rm = TRUE),
  sd_length = sd(length_mm, na.rm = TRUE),
  se_length = sd(length_mm, na.rm = TRUE)/ sum(!is.na(length_mm))^.5,
  count = sum(!is.na(length_mm)),
  .groups = "drop"
) %>%
arrange(desc(count))
sculpin_stats_df
```

```
# A tibble: 7 \times 5
 lake mean_length sd_length se_length count
                               <dbl> <int>
 <chr>
            <dbl>
                    <dbl>
1 Toolik
                      12.0
                               0.834 208
              51.7
2 NE 12
              49.8
                       15.2
                              1.13
                                      180
                               0.949 132
3 S 06
             54.0
                      10.9
4 E 01
              58.2
                       15.3
                              1.72
                                      79
5 S 07
              55.6
                       12.7
                               1.48
                                       73
6 NE 14
              47.3
                       10.5
                              1.72
                                      37
7 E 05
              47.1
                       10.8
                               2.88
                                       14
```

Now let's visualize these statistics:

```
# Create a bar plot of mean lengths with error bars
s_df %>%
ggplot(aes(lake, length_mm)) +
stat_summary(
  fun = mean, na.rm = TRUE,
  geom = "bar",
  fill = "skyblue"
  ) +
stat_summary(
  fun.data = mean_se, na.rm = TRUE,
  geom = "errorbar",
  width = 0.2)
```


We could also do this from the dataframe we just made

The power of the pipe command is you can do this without hving to make a new dataframe

```
# Create a bar plot of mean lengths with error bars
s_df %>%
group_by(lake) %>%
summarize(
mean_length = mean(length_mm, na.rm = TRUE),
```


Based on the mean plot and what you've seen in the distributions, what can you say about fish sizes in different lakes? Are there lakes with particularly large or small fish?

We will start to ask how different are they and is it by chance?

Where would you want to fish and why? What is the chance of catching a fish greater than X size?

This is the inductive phase of doing research.

Part 5: Guided Challenges

Now it's your turn to explore the data! Work with your partner to complete these challenges:

- 1. Find the lake with the widest range of fish lengths (hint: use the range() function)
- 2. Create box and whisker plots to compare fish lengths across lakes:

```
# Example boxplot code to get you started
s_df %>%
filter(!is.na(length_mm)) %>%
ggplot(aes(x = lake, y = length_mm)) +
geom_boxplot() +
theme(axis.text.x = element_text(angle = 90, hjust = 1))
```


3. Explore if there's a relationship between fish length and mass:

```
# Starting code for length-mass relationship
s_df %>%
filter(!is.na(length_mm), !is.na(mass_g)) %>%
ggplot(aes(x = length_mm, y = mass_g)) +
geom_point()
```


4. Try creating a density plot that shows all lakes in different colors:

```
# Starting code for multi-lake density plot
s_df %>%
  filter(!is.na(length_mm)) %>%
  ggplot(aes(x = length_mm, fill = lake)) +
  geom_density(alpha = 0.3)
```


Reflection Questions

After completing the activities, discuss these questions with your group:

- 1. How does sample size affect our view of a population's characteristics?
- 2. Why might fish lengths be different in different lakes?
- 3. What are the advantages and disadvantages of histograms versus density plots?
- 4. What additional data would help you better understand these fish populations?