Lecture 09 Correlation and Regression

Bill Perry

Lecture 8: Review

Covered

- Study design
- · Causality in ecology
- Experimental design:
 - ► Replication, controls, randomization, independence
- Sampling in field studies
- Power analysis: a priori and post hoc
- Study design and analysis

Lecture 9: Overview

The objectives:

This lecture covers two fundamental statistical techniques in biology: correlation and regression analysis. Based on Chapters 16-17 from Whitlock & Schluter's *The Analysis of Biological Data* (3rd edition), we'll explore:

• Correlation analysis: measuring relationships between variables

- The distinction between correlation and regression
- Simple linear regression: predicting one variable from another
- Estimating and interpreting regression parameters
- Testing assumptions and handling violations
- Analysis of variance in regression
- Model selection and comparison

Lecture 9: Correlation vs. Regression:

What's the Difference?

Correlation Analysis:

- Measures the strength and direction of a relationship between two numerical variables
- Both X and Y are random variables (both measured, neither manipulated)
- Variables are typically on equal footing (either could be X or Y)
- No cause-effect relationship implied
- · Quantifies the degree to which variables are related
- Expressed as a correlation coefficient (r) from -1 to +1

Regression Analysis:

- Predicts one variable (Y) from another (X)
- X is often fixed or controlled (manipulated)
- Y is the response variable of interest
- Often implies a cause-effect relationship
- Produces an equation for prediction
- Estimates slope and intercept parameters

Correlation View - no dependent/independent distinction

Lecture 9: Correlation Analysis

What Is Correlation?

Correlation analysis measures the strength and direction of a relationship between two numerical variables:

- Ranges from -1 to +1
- +1 indicates perfect positive correlation
- 0 indicates no correlation
- -1 indicates perfect negative correlation

The **Pearson correlation coefficient (r)** is defined as:

$$r = \frac{\sum_{i} \left(\boldsymbol{X}_{i} - \boldsymbol{X}^{^{-}}\right) \left(\boldsymbol{Y}_{i} - \boldsymbol{Y}^{^{-}}\right)}{\sqrt{\sum_{i} \left(\boldsymbol{X}_{i} - \boldsymbol{X}^{^{-}}\right)^{2} \sum_{i} \left(\boldsymbol{Y}_{i} - \boldsymbol{Y}^{^{-}}\right)^{2}}}$$

This can be simplified as:

$$r = \frac{\text{Covariance }(X,Y)}{s_X \cdot s_Y}$$

Where s_X and s_Y are the standard deviations of X and Y.

Lecture 9: Correlation Analysis

Example 16.1: Flipping the Bird

Nazca boobies (Sula granti) - Do aggressive behaviors as a chick predict future aggressive behavior as an adult?

- correlation is r = 0.534 moderate positive relationship
- p-value = 0.007 correlation is statistically significant.

For a Pearson correlation coefficient (r) of 0.53372:

- This is r (not rho as Spearman nonparticipant below), as indicated by "cor" in your output
- To determine the amount of variation explained, you square this value: $r^2 = 0.53372^2 = 0.2849$ (or approximately 28.49%)
- means about 28.49% of the variance in one variable can be explained by the other variable

Note
$$t = \frac{r}{SE_r}$$

[1] 0.5337225

```
Pearson's product-moment correlation

data: booby_data$visits_as_nestling and booby_data$future_aggression

t = 2.9603, df = 22, p-value = 0.007229

alternative hypothesis: true correlation is not equal to 0

95 percent confidence interval:
    0.1660840 0.7710999

sample estimates:
    cor
    0.5337225
```

Lecture 9: Correlation Analysis

Example 16.1: Flipping the Bird

Interpretation: The correlation coefficient of r = 0.534 suggests that Nazca boobies who experienced more visits from non-parent adults as nestlings tend to display more aggressive behavior as adults. This supports the hypothesis that early experiences influence adult behavior patterns in this species.

Standard Error:

$$\mathrm{SE}_r = \sqrt{\tfrac{1-r^2}{n-2}}$$

SE = 0.180

Need to be sure relationship is not curved - note below

Lecture 9: Correlation Analysis

Testing Assumptions for Correlation

As described in Section 16.3, correlation analysis has key assumptions:

- 1. **Random sampling**: Observations should be a random sample from the population
- 2. **Bivariate normality**: Both variables follow a normal distribution, and their joint distribution is bivariate normal
- 3. Linear relationship: The relationship between variables is linear, not curved

Let's check these assumptions using the lion data from Example 17.1 Lion Noses:

```
Shapiro-Wilk normality test

data: lion_data$proportion_black

W = 0.88895, p-value = 0.003279
```

```
Shapiro-Wilk normality test

data: lion_data$age_years

W = 0.87615, p-value = 0.001615
```

Lecture 9: Correlation Analysis

Testing Assumptions for Correlation

As described in Section 16.3, correlation analysis has key assumptions:

- 1. Random sampling: Observations should be a random sample from the population
- 2. **Bivariate normality**: Both variables follow a normal distribution, and their joint distribution is bivariate normal

3. **Linear relationship**: The relationship between variables is linear, not curved Let's check these assumptions using the lion data from Example 17.1 Lion Noses:

Lecture 9: Correlation Analysis

What to do if assumptions are violated:

Transform one or both variables (log, square root, etc.)

Use non-parametric correlation (**Spearman's rank correlation**) or Kendall's tau ?

Examine the data for outliers or influential points

To understand the amount of variation explained, you can square the Spearman's rho value.

For your value of 0.74485:

$$\rho^2 = 0.74485^2 = 0.5548$$

This means approximately 55.48% of the variance in ranks of one variable can be explained by the ranks of the other variable. This is similar to how R² works in linear regression, but specifically for ranked data.

Spearman's rank correlation rho

data: lion_data\$proportion_black and lion_data\$age_years

S = 1392.1, p-value = 1.013e-06
alternative hypothesis: true rho is not equal to 0
sample estimates:

Lecture 9: Correlation Analysis

Correlation: Important Considerations

The correlation coefficient depends on the range

- Restricting range of values can reduce the correlation coefficient
- Comparing correlations between studies requires similar ranges of values

Measurement error affects correlation

- Measurement error in X or Y tends to weaken observed correlation
- This bias is called **attenuation**
- True correlation typically stronger than observed correlation

Correlation vs. Causation

- Correlation does not imply causation
- Three possible explanations for correlation:
 - 1. X causes Y
 - 2. Y causes X
 - 3. Z (a third variable) causes both X and Y

Correlation significance test

- H_0 : $\rho = 0$ (no correlation in population)
- H_1 : $\rho \neq 0$ (correlation exists in population)
- Test statistic: t = r / SE(r) with df = n-2

Lecture 9: Linear Regression

Simple Linear Regression Model

Simple linear regression models the relationship between a response variable (Y) and a predictor variable (X).

The **population** regression model

$$Y = \alpha + \beta X + \varepsilon$$

Where:

- Y is the response variable
- X is the predictor variable
- α (alpha) is the intercept (value of Y when X=0)
- β (beta) is the slope (change in Y per unit change in X)
- ϵ (epsilon) is the error term (random deviation from the line)

The **sample** regression equation is:

$$\hat{Y} = a + bX$$

Where:

- \hat{Y} is the predicted value of Y
- a is the estimate of α (intercept)
- b is the estimate of β (slope)

Method of Least Squares: The line is chosen to minimize the sum of squared vertical distances (residuals) between observed and predicted Y values.

Lecture 9: Linear Regression

Simple Linear Regression Model

Simple linear regression models the relationship between a response variable (Y) and a predictor variable (X).

The **population** regression model is:

$$Y = \alpha + \beta X + \varepsilon$$

Where:

- Y is the response variable
- X is the predictor variable
- α (alpha) is the intercept (value of Y when X=0)
- β (beta) is the slope (change in Y per unit change in X)
- ϵ (epsilon) is the error term (random deviation from the line)

The **sample** regression equation is:

$$\hat{Y} = a + bX$$

Where:

- \hat{Y} is the predicted value of Y
- a is the estimate of α (intercept)
- b is the estimate of β (slope)

Method of Least Squares: The line is chosen to minimize the sum of squared vertical distances (residuals) between observed and predicted Y values.

Lecture 9: Linear Regression

From Example 17.1 in the textbook the regression line for the lion data is:

```
age = 0.88 + 10.65 \times proportion_{black}
```

This means: - When a lion has no black on its nose (proportion = 0), its predicted age is 0.88 years - For each 0.1 increase in the proportion of black, age increases by 1.065 years - The slope (10.65) indicates that lions with more black on their noses tend to be older

Lecture 9: Linear Regression

Simple Linear Regression Model

- male lions develop more black pigmentation on their noses as they age.
- can be used to estimate the age of lions in the field.

```
Call:
lm(formula = age_years ~ proportion_black, data = lion_data)
Residuals:
   Min
            10 Median
                            30
-2.5449 -1.1117 -0.5285 0.9635 4.3421
Coefficients:
                 Estimate Std. Error t value Pr(>|t|)
(Intercept)
                   0.8790
                             0.5688
                                      1.545
                                                0.133
proportion_black 10.6471
                             1.5095
                                      7.053 7.68e-08 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 1.669 on 30 degrees of freedom
Multiple R-squared: 0.6238,
                               Adjusted R-squared: 0.6113
F-statistic: 49.75 on 1 and 30 DF, p-value: 7.677e-08
```

Lecture 9: Linear Regression

Simple Linear Regression Model

The calculation for slope (b) is:

$$b = \frac{\sum_{i} \left(\boldsymbol{X}_{i} - \boldsymbol{X}^{^{-}}\right) \left(\boldsymbol{Y}_{i} - \boldsymbol{Y}^{^{-}}\right)}{\sum_{i} \left(\boldsymbol{X}_{i} - \boldsymbol{X}^{^{-}}\right)^{2}}$$

Given: -
$$\overline{X} = 0.3222$$
 - $\overline{Y} = 4.3094$ - $\sum_{i} \left(X_{i} - \overline{X} \right)^{2} = 1.2221$ - $\sum_{i} \left(X_{i} - \overline{X} \right) \left(Y_{i} - \overline{Y} \right) = 13.0123$

b = 13.0123 / 1.2221 = 10.647

Intercept (a):
$$a = Y^{-} - bX^{-} = 4.3094 - 10.647(0.3222) = 0.879$$

Making predictions:

To predict the age of a lion with 0.50 proportion of black on its nose:

$$\hat{Y} = 0.88 + 10.65(0.50) = 6.2$$
 years

Confidence intervals vs. Prediction intervals:

- Confidence interval: Range for the mean age of all lions with 0.50 black
- Prediction interval: Range for an individual lion with 0.50 black

Both intervals are narrowest near X^{-} and widen as X moves away from the mean.

Lion Age vs. Nose Blackness

Using nose pigmentation to estimate age

Lecture 9: Linear Regression

Example Prairie Home Companion

- Does biodiversity affect ecosystem stability?
- Tilman et al. (2006) investigated using experimental plots varying plant species

```
<dbl>
                           <dbl>
1
                1
                           0.763
2
                1
                           1.45
3
                1
                           1.51
4
                1
                           0.747
5
                1
                           0.983
                           1.12
```

```
Call:
lm(formula = log_stability ~ species_number, data = prairie_data)
Residuals:
    Min
            1Q Median
                            30
                                   Max
-0.82774 -0.25344 -0.00426 0.27498 0.75240
Coefficients:
             Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.252629 0.041023 30.535 < 2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.3433 on 159 degrees of freedom
Multiple R-squared: 0.149, Adjusted R-squared: 0.1436
F-statistic: 27.83 on 1 and 159 DF, p-value: 4.276e-07
```

```
[1] "rsquared is: 0.148953385305455"
```

The hypothesis test asks whether the slope equals zero:

- H_0 : $\beta = 0$ (species number does not affect stability)
- H_1 : $\beta \neq 0$ (species number does affect stability)

```
The test statistic is: t = \frac{b-\beta_0}{SE_b}
With df = n - 2 = 161 - 2 = 159
```

Interpretation:

The slope estimate is 0.033, indicating that log stability increases by 0.033 units for each additional plant species in the plot.

The p-value is very small (2.73e-10), providing strong evidence to reject the null hypothesis that species number has no effect on ecosystem stability.

 $R^2 = 0.222$, meaning that approximately 22.2% of the variation in log stability is explained by the number of plant species.

This supports the biodiversity-stability hypothesis: more diverse plant communities have more stable biomass production over time.

Number of plant species

12

16

Lecture 9: Linear Regression

Testing Regression Assumptions

Log stability

1.0

0.5

linear regression has four key assumptions:

1. **Linearity**: The relationship between X and Y is linear

4

- 2. **Independence**: Observations are independent
- 3. Homoscedasticity: Equal variance across all values of X
- 4. Normality: Residuals are normally distributed

Let's check these assumptions for the lion regression model:

Assume that **error** ? is $e_i = y_i - \hat{y}_i$

- normally distributed for each x_i
- has the same variance
- has a mean of 0 at each xi

Testing Regression Assumptions

linear regression has four key assumptions:

- 1. Linearity: The relationship between X and Y is linear
- 2. Independence: Observations are independent
- 3. Homoscedasticity: Equal variance across all values of X
- 4. Normality: Residuals are normally distributed

Let's check these assumptions for the lion regression model:

Assume that ${\bf error}$? is - estimated as the residuals: $e_i = y_i - \hat{y}_i$

• ordinary lease square estimates a and b or slope and intercept to minimize the sum of the residuals squared or Mean Squared Error (MSE) as

$$\sum_{i=1}^n = \left(y_i - \hat{y}_i\right)^2$$

Testing Regression Assumptions

linear regression has four key assumptions:

- 1. **Linearity**: The relationship between X and Y is linear
- 2. **Independence**: Observations are independent
- 3. Homoscedasticity: Equal variance across all values of X
- 4. Normality: Residuals are normally distributed

Let's check these assumptions for the lion regression model:

Testing Regression Assumptions

linear regression has four key assumptions:

- 1. **Linearity**: The relationship between X and Y is linear
- 2. **Independence**: Observations are independent
- 3. Homoscedasticity: Equal variance across all values of X
- 4. Normality: Residuals are normally distributed

Let's check these assumptions for the lion regression model:

Testing Regression Assumptions

linear regression has four key assumptions:

- 1. **Linearity**: The relationship between X and Y is linear
- 2. **Independence**: Observations are independent
- 3. Homoscedasticity: Equal variance across all values of X
- 4. Normality: Residuals are normally distributed

Let's check these assumptions for the lion regression model:

```
Shapiro-Wilk normality test

data: residuals(lion_model)

W = 0.93879, p-value = 0.0692
```

Lecture 9: Linear Regression

Simple Linear Regression Model

linear regression has four key assumptions:

- 1. **Linearity**: The relationship between X and Y is linear
- 2. Independence: Observations are independent
- 3. Homoscedasticity: Equal variance across all values of X
- 4. Normality: Residuals are normally distributed

If assumptions are violated: 1. Transform the data (Section 17.6) 2. Use weighted least squares for heteroscedasticity 3. Consider non-linear models (Section 17.8)

Violation: Non-linearity, Red = linear model / Blue = tru

Violation: Heteroscedasticity Variance increases with x

Violation: Non-normal residuals - Residuals have skewe

Lecture 9: Linear Regression - estimates of error and significance

- Estimates of standard error and confidence intervals for slow and intercept to determine confidence bands
- the 95% confidence band will contain the true population line 95/100 under repeated sampling
- this is usually done in R

Parameter	OLS estimate	Standard error
$oldsymbol{eta}_{l}$	$b_{1} = \frac{\sum_{i=1}^{n} [(x_{i} - \bar{x})(y_{i} - \bar{y})]}{\sum_{i=1}^{n} (x_{i} - \bar{x})^{2}}$	$s_{b_1} = \sqrt{\frac{MS_{Residual}}{\sum_{i=1}^{n} (x_i - \bar{x})^2}}$
$oldsymbol{eta}_0$	$b_0 = \bar{y} - b_1 \bar{x}$	$s_{b_0} = \sqrt{MS_{Residual} \left[\frac{1}{n} + \frac{\bar{x}^2}{\sum_{i=1}^{n} (x_i - \bar{x})^2} \right]}$
$\boldsymbol{\mathcal{E}}_i$	$e_i = y_i - \hat{y}_i$	$\sqrt{ ext{MS}_{ ext{Residual}}}$ (approx.)

Lecture 9: Linear Regression - estimates of error and significance

In addition to getting estimates of population parameters ($\beta 0$, $\beta 1$), want to test hypotheses about them

- This is accomplished by analysis of variance
- Partition variance in Y: due to variation in X, due to other things (error)

Lecture 9: Linear Regression - estimates of variance

Total variation in Y is "partitioned" into 3 components:

- $SS_{regression}\!:\!$ variation explained by regression
 - difference between predicted values ($\hat{y}i$) and mean y (\bar{y})
 - ► dfs= 1 for simple linear (parameters-1)
- $SS_{residual}$: variation not explained by regression
 - difference between observed (y_i) and predicted (\hat{y}_i) values
 - ▶ dfs= n-2
- SS_{total} : total variation
 - sum of squared deviations of each observation (y_i) from mean (y_i)
 - \rightarrow dfs = n-1

Lecture 9: Linear Regression - estimates of variance

Total variation in Y is "partitioned" into 3 components:

- + $SS_{regression}$: variation explained by regression
 - difference between predicted values ($\hat{y}i$) and mean y ($\bar{y})$
 - ▶ dfs= 1 for simple linear (parameters-1)
- $SS_{residual}$: variation not explained by regression
 - difference between observed (y_i) and predicted (\hat{y}_i) values
 - ► dfs= n-2
- SS_{total} : total variation
 - sum of squared deviations of each observation (y_i) from mean (y^-)

 \rightarrow dfs = n-1

Source of variation	SS	df	MS	Expected mean square
Regression	$\sum_{i=1}^{n} (\hat{y}_i - \bar{y})^2$	I	$\frac{\sum_{i=1}^{n} (\hat{y}_i - \bar{y})^2}{I}$	$\sigma_{\varepsilon}^2 + \beta_1^2 \sum_{i=1}^n (x_i - \bar{x})^2$
Residual	$\sum_{i=1}^{n} (y_i - \hat{y_i})^2$	n-2	$\frac{\sum_{i=1}^{n} (y_i - \hat{y_i})^2}{n-2}$	$\sigma_{\scriptscriptstylearepsilon}^2$
Total	$\sum_{i=1}^{n} (y_i - \bar{y})^2$	n-1		

Lecture 9: Linear Regression - estimates of variance

Total variation in Y is "partitioned" into 3 components:

- + $SS_{regression}$: variation explained by regression
 - GREATER IN C than D
- $SS_{residual}$: variation not explained by regression
 - ► GREATER IN B THAN A
- SS_{total} : total variation

Lecture 9: Linear Regression - estimates of variance

Sums of Squares and degress of freedome are:

$$SS_{regression} + SS_{residual} = SS_{total} \label{eq:ssidual}$$

$$df_{regression} + df_{residual} = df_{total} \label{eq:fression}$$

- Sums of Squares depends on n
- We need a different estimate of variance

Source of variation	SS	df	MS	Expected mean square
Regression	$\sum_{i=1}^{n} (\hat{y}_i - \bar{y})^2$	I	$\frac{\sum_{i=1}^{n} (\hat{y}_i - \bar{y})^2}{ }$	$\sigma_{\varepsilon}^2 + \beta_1^2 \sum_{i=1}^n (x_i - \bar{x})^2$
Residual	$\sum_{i=1}^{n} (y_i - \hat{y}_i)^2$	n – 2	$\frac{\sum_{i=1}^{n} (y_i - \hat{y_i})^2}{n-2}$	$\sigma_{\scriptscriptstyle \mathcal{E}}^2$
Total	$\sum_{i=1}^{n} (y_i - \bar{y})^2$	n-1		

Lecture 9: Linear Regression - estimates of variance

Sums of Squares converted to Mean Squares

- Sums of Squares divided by degrees of freedom does not depend on n
- + $MS_{residual}$: estimate population variation
- $MS_{regression}\!\!:\!$ estimate pop variation and variation due to X-Y relationship
- Mean Squares are not additive

Source of variation	SS	df	MS	Expected mean square
Regression	$\sum_{i=1}^{n} (\hat{y}_i - \bar{y})^2$	I	$\frac{\sum_{i=1}^{n} (\hat{y}_i - \bar{y})^2}{ }$	$\sigma_{\varepsilon}^2 + \beta_1^2 \sum_{i=1}^n (x_i - \bar{x})^2$
Residual	$\sum_{i=1}^{n} (y_i - \hat{y}_i)^2$	n – 2	$\frac{\sum_{i=1}^{n} (y_i - \hat{y_i})^2}{n-2}$	$\sigma_{\scriptscriptstylearepsilon}^2$
Total	$\sum_{i=1}^{n} (y_i - \bar{y})^2$	n — I		