Lecture 09 Correlation and Regression

Bill Perry

Lecture 8: Review
Covered

« Study design
« Causality in ecology
+ Experimental design:
» Replication, controls, randomization, independence
+ Sampling in field studies
« Power analysis: a priori and post hoc
« Study design and analysis
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Lecture 9: Overview

The objectives:
This lecture covers two fundamental statistical techniques in biology: correlation and regression analysis. Based
on Chapters 16-17 from Whitlock & Schluter’s The Analysis of Biological Data (3rd edition), we’ll explore:

« Correlation analysis: measuring relationships between variables
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« The distinction between correlation and regression

+ Simple linear regression: predicting one variable from another
« Estimating and interpreting regression parameters

« Testing assumptions and handling violations

+ Analysis of variance in regression

« Model selection and comparison

Lecture 9: Correlation vs. Regression:

What’s the Difference?
Correlation Analysis:

« Measures the strength and direction of a relationship between two numerical variables
« Both X and Y are random variables (both measured, neither manipulated)

« Variables are typically on equal footing (either could be X or Y)

« No cause-effect relationship implied

+ Quantifies the degree to which variables are related

+ Expressed as a correlation coefficient (r) from -1 to +1

Regression Analysis:

« Predicts one variable (Y) from another (X)
« X is often fixed or controlled (manipulated)
+ Y is the response variable of interest

+ Often implies a cause-effect relationship

+ Produces an equation for prediction

« Estimates slope and intercept parameters

Correlation View - no dependent/independent distinction
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Lecture 9: Correlation Analysis
What Is Correlation?

Correlation analysis measures the strength and direction of a relationship between two numerical variables:
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« Ranges from -1 to +1

+ +1 indicates perfect positive correlation
+ 0 indicates no correlation

+ -1 indicates perfect negative correlation

The Pearson correlation coefficient (r) is defined as:
L (X )(¥-Y)
YORCES S A )

r =

This can be simplified as:
Covariance (X,Y)

SX'SY

r =
Where sy and sy- are the standard deviations of X and Y.

Perfect Positive Correlation r = 1
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Lecture 9: Correlation Analysis

Example 16.1: Flipping the Bird
Nazca boobies (Sula granti) - Do aggressive behaviors as a chick predict future aggressive behavior as an adult?

« correlation is r = 0.534 - moderate positive relationship
« p-value = 0.007 correlation is statistically significant.

For a Pearson correlation coefficient (r) of 0.53372:



« This is r (not rho as Spearman nonparticipant below), as indicated by “cor” in your output

+ To determine the amount of variation explained, you square this value: r* = 0.53372% = 0.2849 (or approximately
28.49%)

+ means about 28.49% of the variance in one variable can be explained by the other variable

_.r
NOtet_S_ET
[1] 0.5337225

Pearson's product-moment correlation

data: booby data$visits as nestling and booby data$future aggression
t = 2.9603, df = 22, p-value = 0.007229
alternative hypothesis: true correlation is not equal to 0O
95 percent confidence interval:
0.1660840 0.7710999
sample estimates:
cor
0.5337225

Lecture 9: Correlation Analysis

Example 16.1: Flipping the Bird

Interpretation: The correlation coefficient of r = 0.534 suggests that Nazca boobies who experienced more visits
from non-parent adults as nestlings tend to display more aggressive behavior as adults. This supports the hypoth-
esis that early experiences influence adult behavior patterns in this species.

Standard Error:

1—r2
SE, —
SE =0.180

Need to be sure relationship is not curved - note below



°
o ° °
[ ] [ PS
O °
°
c 0.0-
Ko}
%) [ ] [ ]
8 ° °
S o o °
(o)
ml
o
S
= ° °
2 -05- =
° °
°
0 10 20 30

visits_as_nestling

Lecture 9: Correlation Analysis
Testing Assumptions for Correlation

As described in Section 16.3, correlation analysis has key assumptions:

1. Random sampling: Observations should be a random sample from the population
2. Bivariate normality: Both variables follow a normal distribution, and their joint distribution is bivariate nor-
mal

3. Linear relationship: The relationship between variables is linear, not curved

Let’s check these assumptions using the lion data from Example 17.1 Lion Noses:

Shapiro-Wilk normality test

data: lion data$proportion black
W = 0.88895, p-value = 0.003279

Shapiro-Wilk normality test

data: lion data$age years
W = 0.87615, p-value = 0.001615

Lecture 9: Correlation Analysis
Testing Assumptions for Correlation

As described in Section 16.3, correlation analysis has key assumptions:

1. Random sampling: Observations should be a random sample from the population
2. Bivariate normality: Both variables follow a normal distribution, and their joint distribution is bivariate nor-
mal



3. Linear relationship: The relationship between variables is linear, not curved

Let’s check these assumptions using the lion data from Example 17.1 Lion Noses:

Nose Blackness Q-Q Plot Nose Blackness
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Lecture 9: Correlation Analysis

What to do if assumptions are violated:
Transform one or both variables (log, square root, etc.)

Use non-parametric correlation (Spearman’s rank correlation) or Kendall’s tau
Examine the data for outliers or influential points

To understand the amount of variation explained, you can square the Spearman’s rho value.
For your value of 0.74485:

p? = 0.74485% = 0.5548

This means approximately 55.48% of the variance in ranks of one variable can be explained by the ranks of the
other variable. This is similar to how R* works in linear regression, but specifically for ranked data.

Spearman's rank correlation rho

data: lion data$proportion black and lion_data$age years
S = 1392.1, p-value = 1.013e-06

alternative hypothesis: true rho is not equal to 0

sample estimates:



rho
0.7448561

Lecture 9: Correlation Analysis
Correlation: Important Considerations

The correlation coefficient depends on the range

« Restricting range of values can reduce the correlation coefficient
« Comparing correlations between studies requires similar ranges of values

Measurement error affects correlation

« Measurement error in X or Y tends to weaken observed correlation
« This bias is called attenuation
« True correlation typically stronger than observed correlation

Correlation vs. Causation

+ Correlation does not imply causation

« Three possible explanations for correlation:
1. X causes Y
2. Y causes X
3. Z (a third variable) causes both X and Y

Correlation significance test

+ Hy: p = 0 (no correlation in population)
+ H,: p # 0 (correlation exists in population)
o Test statistic: t = r / SE(r) with df = n-2

Full Range of Data
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Lecture 9: Linear Regression



Simple Linear Regression Model

Simple linear regression models the relationship between a response variable (Y) and a predictor variable (X).

The population regression model
Y=a+p8X+¢
Where:

+ Y is the response variable

+ X is the predictor variable

« o (alpha) is the intercept (value of Y when X=0)

« B (beta) is the slope (change in Y per unit change in X)

« ¢ (epsilon) is the error term (random deviation from the line)

The sample regression equation is:

A

Y =a+bX
Where:

. Y is the predicted value of Y
. ais the estimate of o (intercept)
« b is the estimate of 3 (slope)

Method of Least Squares: The line is chosen to minimize the sum of squared vertical distances (residuals) be-
tween observed and predicted Y values.
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Lecture 9: Linear Regression



Simple Linear Regression Model

Simple linear regression models the relationship between a response variable (Y) and a predictor variable (X).

The population regression model is:

Y=a+p8X+¢

Where:

+ Y is the response variable

+ X is the predictor variable

« a (alpha) is the intercept (value of Y when X=0)

« B (beta) is the slope (change in Y per unit change in X)

« ¢ (epsilon) is the error term (random deviation from the line)

The sample regression equation is:

N

Y =a+bX
Where:
« Y is the predicted value of Y
« ais the estimate of « (intercept)

« b is the estimate of 3 (slope)

Method of Least Squares: The line is chosen to minimize the sum of squared vertical distances (residuals) be-

tween observed and predicted Y values.

Lion Age vs. Nose Blackness
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Lecture 9: Linear Regression

From Example 17.1 in the textbook the regression line for the lion data is:

10

Slope (B) =10.65

Intercept (a) =0.88

0.75



age = 0.88 4 10.65 x proportiony;, i

This means: - When a lion has no black on its nose (proportion = 0), its predicted age is 0.88 years - For each 0.1
increase in the proportion of black, age increases by 1.065 years - The slope (10.65) indicates that lions with more
black on their noses tend to be older

Lion Age vs. Nose Blackness
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Lecture 9: Linear Regression

Simple Linear Regression Model
« male lions develop more black pigmentation on their noses as they age.
« can be used to estimate the age of lions in the field.

Call:
Ilm(formula = age years ~ proportion black, data = lion data)

Residuals:
Min 1Q Median 30 Max
-2.5449 -1.1117 -0.5285 0.9635 4.3421

Coefficients:

Estimate Std. Error t value Pr(>|t]|)
(Intercept) 0.8790 0.5688 1.545 0.133
proportion _black 10.6471 1.5095 7.053 7.68e-08 ***
Signif. codes: 0 '**x' @,001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.669 on 30 degrees of freedom
Multiple R-squared: 0.6238, Adjusted R-squared: 0.6113
F-statistic: 49.75 on 1 and 30 DF, p-value: 7.677e-08

Lecture 9: Linear Regression
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Simple Linear Regression Model
The calculation for slope (b) is:

T (X )¥-Y)

(XX
Given:- X =0.3222-Y =4.3094-% (X, — X7)2 =1.2221-3 (X, - X )(¥;—Y ) =13.0123
b =13.0123/ 1.2221 = 10.647

b:

Intercept (a): a =Y —bX = 4.3094 — 10.647(0.3222) = 0.879
Making predictions:
To predict the age of a lion with 0.50 proportion of black on its nose:

Y = 0.88 4+ 10.65(0.50) = 6.2 years

Confidence intervals vs. Prediction intervals:

+ Confidence interval: Range for the mean age of all lions with 0.50 black
« Prediction interval: Range for an individual lion with 0.50 black

Both intervals are narrowest near X and widen as X moves away from the mean.

Lion Age vs. Nose Blackness
Using nose pigmentation to estimate age

age = 0.88 + 10.65 x proportion_black
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Lecture 9: Linear Regression

Example Prairie Home Companion
« Does biodiversity affect ecosystem stability?
« Tilman et al. (2006) investigated using experimental plots varying plant species

# A tibble: 6 x 2
species number log stability
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<db1l> <dbl>

1 1 0.763
2 1 1.45

3 1 1.51

4 1 0.747
5 1 0.983
6 1 1.12

Call:

Im(formula = log stability ~ species number, data = prairie data)

Residuals:
Min 1Q Median 3Q Max
-0.82774 -0.25344 -0.00426 0.27498 0.75240

Coefficients:

Estimate Std. Error t value Pr(>|t]|)
(Intercept) 1.252629 0.041023 30.535 < 2e-16 ***
species number 0.025984 0.004926 5.275 4.28e-07 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.65 '.' 0.1 ' ' 1

Residual standard error: 0.3433 on 159 degrees of freedom
Multiple R-squared: 0.149, Adjusted R-squared: 0.1436
F-statistic: 27.83 on 1 and 159 DF, p-value: 4.276e-07

[1] "rsquared is: 0.148953385305455"

Analysis of Variance Table

Response: log stability

Df Sum Sg Mean Sq F value Pr(>F)
species number 1 3.2792 3.2792 27.829 4.276e-07 ***
Residuals 159 18.7358 0.1178

Signif. codes: 0 '***' 0,001 '**' 0.01 '*' 0.65 '.' 0.1 ' ' 1

Lecture 9: Linear Regression
The hypothesis test asks whether the slope equals zero:

« H,: f = 0 (species number does not affect stability)
« H,: B # 0 (species number does affect stability)

The test statistic is: ¢t = lgg o
b

Withdf=n-2=161-2=159

Interpretation:

The slope estimate is 0.033, indicating that log stability increases by 0.033 units for each additional plant species
in the plot.

The p-value is very small (2.73e-10), providing strong evidence to reject the null hypothesis that species number
has no effect on ecosystem stability.
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R? = 0.222, meaning that approximately 22.2% of the variation in log stability is explained by the number of plant
species.

This supports the biodiversity-stability hypothesis: more diverse plant communities have more stable biomass
production over time.

Biodiversity and Ecosystem Stability
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Lecture 9: Linear Regression
Testing Regression Assumptions
linear regression has four key assumptions:

1. Linearity: The relationship between X and Y is linear

2. Independence: Observations are independent

3. Homoscedasticity: Equal variance across all values of X
4. Normality: Residuals are normally distributed

Let’s check these assumptions for the lion regression model:

Assume that error (2] ise;, =y, — 9;
« normally distributed for each x;
« has the same variance

« has a mean of 0 at each xi
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Lecture 9: Linear Regression
Testing Regression Assumptions

linear regression has four key assumptions:

1. Linearity: The relationship between X and Y is linear

2. Independence: Observations are independent

3. Homoscedasticity: Equal variance across all values of X
4. Normality: Residuals are normally distributed

Let’s check these assumptions for the lion regression model:

Assume that error (2] is - estimated as the residuals: e; = y; — 9;

« ordinary lease square estimates a and b or slope and intercept to minimize the sum of the residuals squared or
Mean Squared Error (MSE) as

Z:;l = (yz - @1)2
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least squares

| y regression
i

line
y, — j'i_ = residual I

predicted Y-value for x;

Lecture 9: Linear Regression
Testing Regression Assumptions

linear regression has four key assumptions:

1. Linearity: The relationship between X and Y is linear

2. Independence: Observations are independent

3. Homoscedasticity: Equal variance across all values of X
4. Normality: Residuals are normally distributed

Let’s check these assumptions for the lion regression model:
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Lecture 9: Linear Regression
Testing Regression Assumptions

linear regression has four key assumptions:

1. Linearity: The relationship between X and Y is linear

2. Independence: Observations are independent

3. Homoscedasticity: Equal variance across all values of X
4. Normality: Residuals are normally distributed

Let’s check these assumptions for the lion regression model:
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Q-Q Residuals
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Lecture 9: Linear Regression

Testing Regression Assumptions

linear regression has four key assumptions:
. Linearity: The relationship between X and Y is linear
. Independence: Observations are independent

1
2
3. Homoscedasticity: Equal variance across all values of X
4. Normality: Residuals are normally distributed

Let’s check these assumptions for the lion regression model:

Shapiro-Wilk normality test

data: residuals(lion model)
W = 0.93879, p-value = 0.0692

Lecture 9: Linear Regression
Simple Linear Regression Model
linear regression has four key assumptions:

1. Linearity: The relationship between X and Y is linear

2. Independence: Observations are independent

3. Homoscedasticity: Equal variance across all values of X
4. Normality: Residuals are normally distributed

If assumptions are violated: 1. Transform the data (Section 17.6) 2. Use weighted least squares for heteroscedas-

ticity 3. Consider non-linear models (Section 17.8)
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Lecture 9: Linear Regression - estimates of error and significance
« Estimates of standard error and confidence intervals for slow and intercept to determine confidence bands

« the 95% confidence band will contain the true population line 95/100 under repeated sampling

o this is usually done in R

Parameter OLS estimate Standard error

> 0= R~ 7)]

}B b n St: I =
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i=|
- _ | X
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Lecture 9: Linear Regression - estimates of error and significance
In addition to getting estimates of population parameters (80, 1), want to test hypotheses about them

« This is accomplished by analysis of variance
« Partition variance in Y: due to variation in X, due to other things (error)
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Lecture 9: Linear Regression - estimates of variance

Total variation in Y is “partitioned” into 3 components:

* 55, egression: variation explained by regression
» difference between predicted values (yi ) and mean y (¥)
» dfs= 1 for simple linear (parameters-1)

* S8, csiduar: Variation not explained by regression
» difference between observed (y;) and predicted (§;) values
» dfs=n-2

» S5, ,1a:: total variation

» sum of squared deviations of each observation (y,) from mean (y )

(a) (b) .
Viie )
9, +- Vi fT e

Lecture 9: Linear Regression - estimates of variance
Total variation in Y is “partitioned” into 3 components:

* S8, cgression: variation explained by regression

» difference between predicted values (i ) and mean y (¥)
» dfs= 1 for simple linear (parameters-1)

- SS

residua
» difference between observed (y;) and predicted (§;) values

» dfs=n-2
« SS

tota

;: variation not explained by regression

;: total variation

» sum of squared deviations of each observation (y,) from mean ()

20



» dfs =n-1

Source of variation SS df MS Expected mean square
,ﬁ >0 ,ﬂ
Regression (7.7 — | ol+p? D, (x,—X)?
i=1 =I
, 2 =97
Residual — )2 -2 — 2
esidua 2 v.—5) n — o;
Total " (v —)? n—|
=1

Lecture 9: Linear Regression - estimates of variance

Total variation in Y is “partitioned” into 3 components

* S8, cgression: variation explained by regression

» GREATER IN C than D

* 585, csiduqi: variation not explained by regression
» GREATER IN B THAN A

» 55,141 total variation

(a)

Lecture 9: Linear Regression - estimates of variance

Y 7
Vi -
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Sums of Squares and degress of freedome are:
SSregression + S‘Sresidual = S‘Stotal

dfregression + dfresidual = dftotal

+ Sums of Squares depends on n
« We need a different estimate of variance

Source of variation SS df MS

Expected mean square

. > 0=7)
Regression (7, —7) %
i=1

Residual i(y,—ﬁ)z n—2
i=1

Total i v.—¥)* n—I
i=1

a__?+,9?2(x—>‘<)?

Lecture 9: Linear Regression - estimates of variance
Sums of Squares converted to Mean Squares

« Sums of Squares divided by degrees of freedom - does not depend on n
o MS, . ique: €stimate population variation

© MS,  gression: €stimate pop variation and variation due to X-Y relationship
« Mean Squares are not additive

Source of variation SS df MS

Expected mean square

Regression (7, —p)?

Residual S 5, — ) n—2 =

Total v —¥) n—1|

a__?+,9?2(x—>‘<)?
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