
Lecture 09 Correlation and Regression

Bill Perry

Lecture 8: Review
Covered

• Study design
• Causality in ecology
• Experimental design:

‣ Replication, controls, randomization, independence
• Sampling in field studies
• Power analysis: a priori and post hoc
• Study design and analysis

Lecture 9: Overview
The objectives:
This lecture covers two fundamental statistical techniques in biology: correlation and regression analysis. Based
on Chapters 16-17 from Whitlock & Schluter’s The Analysis of Biological Data (3rd edition), we’ll explore:

• Correlation analysis: measuring relationships between variables
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• The distinction between correlation and regression
• Simple linear regression: predicting one variable from another
• Estimating and interpreting regression parameters
• Testing assumptions and handling violations
• Analysis of variance in regression
• Model selection and comparison

Lecture 9: Correlation vs. Regression:
What’s the Difference?
Correlation Analysis:

• Measures the strength and direction of a relationship between two numerical variables
• Both X and Y are random variables (both measured, neither manipulated)
• Variables are typically on equal footing (either could be X or Y)
• No cause-effect relationship implied
• Quantifies the degree to which variables are related
• Expressed as a correlation coefficient (r) from −1 to +1

Regression Analysis:

• Predicts one variable (Y) from another (X)
• X is often fixed or controlled (manipulated)
• Y is the response variable of interest
• Often implies a cause-effect relationship
• Produces an equation for prediction
• Estimates slope and intercept parameters

Lecture 9: Correlation Analysis
What Is Correlation?
Correlation analysis measures the strength and direction of a relationship between two numerical variables:
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• Ranges from −1 to +1
• +1 indicates perfect positive correlation
• 0 indicates no correlation
• −1 indicates perfect negative correlation

The Pearson correlation coefficient (r) is defined as:

𝑟 =
∑𝑖(𝑋𝑖 − 𝑋‾)(𝑌𝑖 − 𝑌 ‾)

√∑𝑖 (𝑋𝑖 − 𝑋‾)2 ∑𝑖 (𝑌𝑖 − 𝑌 ‾)2

This can be simplified as:

𝑟 =
Covariance (𝑋, 𝑌 )

𝑠𝑋 ⋅ 𝑠𝑌

Where 𝑠𝑋 and 𝑠𝑌  are the standard deviations of X and Y.

Lecture 9: Correlation Analysis
Example 16.1: Flipping the Bird
Nazca boobies (Sula granti) - Do aggressive behaviors as a chick predict future aggressive behavior as an adult?

• correlation is r = 0.534 - moderate positive relationship
• p-value = 0.007 correlation is statistically significant.

For a Pearson correlation coefficient (r) of 0.53372:
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• This is r (not rho as Spearman nonparticipant below), as indicated by “cor” in your output
• To determine the amount of variation explained, you square this value: r² = 0.53372² = 0.2849 (or approximately

28.49%)
• means about 28.49% of the variance in one variable can be explained by the other variable

Note t = 𝑟
𝑆𝐸𝑟

[1] 0.5337225

    Pearson's product-moment correlation

data:  booby_data$visits_as_nestling and booby_data$future_aggression
t = 2.9603, df = 22, p-value = 0.007229
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
 0.1660840 0.7710999
sample estimates:
      cor
0.5337225

Lecture 9: Correlation Analysis
Example 16.1: Flipping the Bird
Interpretation: The correlation coefficient of r = 0.534 suggests that Nazca boobies who experienced more visits
from non-parent adults as nestlings tend to display more aggressive behavior as adults. This supports the hypoth-
esis that early experiences influence adult behavior patterns in this species.

Standard Error:

SE𝑟 = √1−𝑟2

𝑛−2

SE = 0.180
Need to be sure relationship is not curved - note below
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Lecture 9: Correlation Analysis
Testing Assumptions for Correlation
As described in Section 16.3, correlation analysis has key assumptions:

1. Random sampling: Observations should be a random sample from the population
2. Bivariate normality: Both variables follow a normal distribution, and their joint distribution is bivariate nor-

mal
3. Linear relationship: The relationship between variables is linear, not curved

Let’s check these assumptions using the lion data from Example 17.1 Lion Noses:

    Shapiro-Wilk normality test

data:  lion_data$proportion_black
W = 0.88895, p-value = 0.003279

    Shapiro-Wilk normality test

data:  lion_data$age_years
W = 0.87615, p-value = 0.001615

Lecture 9: Correlation Analysis
Testing Assumptions for Correlation
As described in Section 16.3, correlation analysis has key assumptions:

1. Random sampling: Observations should be a random sample from the population
2. Bivariate normality: Both variables follow a normal distribution, and their joint distribution is bivariate nor-

mal
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3. Linear relationship: The relationship between variables is linear, not curved

Let’s check these assumptions using the lion data from Example 17.1 Lion Noses:

Lecture 9: Correlation Analysis
What to do if assumptions are violated:
Transform one or both variables (log, square root, etc.)

Use non-parametric correlation (Spearman’s rank correlation) or Kendall’s tau 􏿿

Examine the data for outliers or influential points

To understand the amount of variation explained, you can square the Spearman’s rho value.

For your value of 0.74485:

ρ² = 0.74485² = 0.5548

This means approximately 55.48% of the variance in ranks of one variable can be explained by the ranks of the
other variable. This is similar to how R² works in linear regression, but specifically for ranked data.

    Spearman's rank correlation rho

data:  lion_data$proportion_black and lion_data$age_years
S = 1392.1, p-value = 1.013e-06
alternative hypothesis: true rho is not equal to 0
sample estimates:
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      rho
0.7448561

Lecture 9: Correlation Analysis
Correlation: Important Considerations
The correlation coefficient depends on the range

• Restricting range of values can reduce the correlation coefficient
• Comparing correlations between studies requires similar ranges of values

Measurement error affects correlation

• Measurement error in X or Y tends to weaken observed correlation
• This bias is called attenuation
• True correlation typically stronger than observed correlation

Correlation vs. Causation

• Correlation does not imply causation
• Three possible explanations for correlation:

1. X causes Y
2. Y causes X
3. Z (a third variable) causes both X and Y

Correlation significance test

• H₀: ρ = 0 (no correlation in population)
• H₁: ρ ≠ 0 (correlation exists in population)
• Test statistic: t = r / SE(r) with df = n-2

Lecture 9: Linear Regression
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Simple Linear Regression Model
Simple linear regression models the relationship between a response variable (Y) and a predictor variable (X).

The population regression model

𝑌 = 𝛼 + 𝛽𝑋 + 𝜀

Where:

• Y is the response variable
• X is the predictor variable
• α (alpha) is the intercept (value of Y when X=0)
• β (beta) is the slope (change in Y per unit change in X)
• ε (epsilon) is the error term (random deviation from the line)

The sample regression equation is:

𝑌 = 𝑎 + 𝑏𝑋

Where:

• 𝑌  is the predicted value of Y
• a is the estimate of α (intercept)
• b is the estimate of β (slope)

Method of Least Squares: The line is chosen to minimize the sum of squared vertical distances (residuals) be-
tween observed and predicted Y values.
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Lecture 9: Linear Regression
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Simple Linear Regression Model
Simple linear regression models the relationship between a response variable (Y) and a predictor variable (X).

The population regression model is:

𝑌 = 𝛼 + 𝛽𝑋 + 𝜀

Where:

• Y is the response variable

• X is the predictor variable

• α (alpha) is the intercept (value of Y when X=0)

• β (beta) is the slope (change in Y per unit change in X)

• ε (epsilon) is the error term (random deviation from the line)

The sample regression equation is:

𝑌 = 𝑎 + 𝑏𝑋

Where:

• 𝑌  is the predicted value of Y

• a is the estimate of α (intercept)

• b is the estimate of β (slope)

Method of Least Squares: The line is chosen to minimize the sum of squared vertical distances (residuals) be-
tween observed and predicted Y values.

Lecture 9: Linear Regression
From Example 17.1 in the textbook the regression line for the lion data is:
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age = 0.88 + 10.65 × proportion𝑏𝑙𝑎𝑐𝑘
This means: - When a lion has no black on its nose (proportion = 0), its predicted age is 0.88 years - For each 0.1
increase in the proportion of black, age increases by 1.065 years - The slope (10.65) indicates that lions with more
black on their noses tend to be older

Lecture 9: Linear Regression
Simple Linear Regression Model
• male lions develop more black pigmentation on their noses as they age.
• can be used to estimate the age of lions in the field.

Call:
lm(formula = age_years ~ proportion_black, data = lion_data)

Residuals:
    Min      1Q  Median      3Q     Max
-2.5449 -1.1117 -0.5285  0.9635  4.3421

Coefficients:
                 Estimate Std. Error t value Pr(>|t|)
(Intercept)        0.8790     0.5688   1.545    0.133
proportion_black  10.6471     1.5095   7.053 7.68e-08 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.669 on 30 degrees of freedom
Multiple R-squared:  0.6238,    Adjusted R-squared:  0.6113
F-statistic: 49.75 on 1 and 30 DF,  p-value: 7.677e-08

Lecture 9: Linear Regression
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Simple Linear Regression Model
The calculation for slope (b) is:

𝑏 =
∑𝑖(𝑋𝑖 − 𝑋‾)(𝑌𝑖 − 𝑌 ‾)

∑𝑖 (𝑋𝑖 − 𝑋‾)2

Given: - 𝑋‾ = 0.3222 - 𝑌 ‾ = 4.3094 - ∑𝑖 (𝑋𝑖 − 𝑋‾)
2

= 1.2221 - ∑𝑖(𝑋𝑖 − 𝑋‾)(𝑌𝑖 − 𝑌 ‾) = 13.0123

b = 13.0123 / 1.2221 = 10.647

Intercept (a): 𝑎 = 𝑌 ‾ − 𝑏𝑋‾ = 4.3094 − 10.647(0.3222) = 0.879

Making predictions:

To predict the age of a lion with 0.50 proportion of black on its nose:

𝑌 = 0.88 + 10.65(0.50) = 6.2  years

Confidence intervals vs. Prediction intervals:

• Confidence interval: Range for the mean age of all lions with 0.50 black
• Prediction interval: Range for an individual lion with 0.50 black

Both intervals are narrowest near 𝑋‾ and widen as X moves away from the mean.

Lecture 9: Linear Regression
Example Prairie Home Companion
• Does biodiversity affect ecosystem stability?
• Tilman et al. (2006) investigated using experimental plots varying plant species

# A tibble: 6 × 2
  species_number log_stability
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           <dbl>         <dbl>
1              1         0.763
2              1         1.45
3              1         1.51
4              1         0.747
5              1         0.983
6              1         1.12

Call:
lm(formula = log_stability ~ species_number, data = prairie_data)

Residuals:
     Min       1Q   Median       3Q      Max
-0.82774 -0.25344 -0.00426  0.27498  0.75240

Coefficients:
               Estimate Std. Error t value Pr(>|t|)
(Intercept)    1.252629   0.041023  30.535  < 2e-16 ***
species_number 0.025984   0.004926   5.275 4.28e-07 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.3433 on 159 degrees of freedom
Multiple R-squared:  0.149, Adjusted R-squared:  0.1436
F-statistic: 27.83 on 1 and 159 DF,  p-value: 4.276e-07

[1] "rsquared is:  0.148953385305455"

Analysis of Variance Table

Response: log_stability
                Df  Sum Sq Mean Sq F value    Pr(>F)
species_number   1  3.2792  3.2792  27.829 4.276e-07 ***
Residuals      159 18.7358  0.1178
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Lecture 9: Linear Regression
The hypothesis test asks whether the slope equals zero:

• H₀: β = 0 (species number does not affect stability)
• H₁: β ≠ 0 (species number does affect stability)

The test statistic is: 𝑡 = 𝑏−𝛽0
𝑆𝐸𝑏

With df = n - 2 = 161 - 2 = 159

Interpretation:

The slope estimate is 0.033, indicating that log stability increases by 0.033 units for each additional plant species
in the plot.

The p-value is very small (2.73e-10), providing strong evidence to reject the null hypothesis that species number
has no effect on ecosystem stability.
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R² = 0.222, meaning that approximately 22.2% of the variation in log stability is explained by the number of plant
species.

This supports the biodiversity-stability hypothesis: more diverse plant communities have more stable biomass
production over time.

Lecture 9: Linear Regression
Testing Regression Assumptions
linear regression has four key assumptions:

1. Linearity: The relationship between X and Y is linear
2. Independence: Observations are independent
3. Homoscedasticity: Equal variance across all values of X
4. Normality: Residuals are normally distributed

Let’s check these assumptions for the lion regression model:

Assume that error 􏿿 is 𝑒𝑖 = 𝑦𝑖 − 𝑦𝑖

• normally distributed for each xi

• has the same variance

• has a mean of 0 at each xi
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Lecture 9: Linear Regression
Testing Regression Assumptions
linear regression has four key assumptions:

1. Linearity: The relationship between X and Y is linear
2. Independence: Observations are independent
3. Homoscedasticity: Equal variance across all values of X
4. Normality: Residuals are normally distributed

Let’s check these assumptions for the lion regression model:

Assume that error 􏿿 is - estimated as the residuals: 𝑒𝑖 = 𝑦𝑖 − 𝑦𝑖

• ordinary lease square estimates a and b or slope and intercept to minimize the sum of the residuals squared or
Mean Squared Error (MSE) as

∑𝑛
𝑖=1 = (𝑦𝑖 − 𝑦𝑖)

2
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Lecture 9: Linear Regression
Testing Regression Assumptions
linear regression has four key assumptions:

1. Linearity: The relationship between X and Y is linear
2. Independence: Observations are independent
3. Homoscedasticity: Equal variance across all values of X
4. Normality: Residuals are normally distributed

Let’s check these assumptions for the lion regression model:
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Lecture 9: Linear Regression
Testing Regression Assumptions
linear regression has four key assumptions:

1. Linearity: The relationship between X and Y is linear
2. Independence: Observations are independent
3. Homoscedasticity: Equal variance across all values of X
4. Normality: Residuals are normally distributed

Let’s check these assumptions for the lion regression model:
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Lecture 9: Linear Regression
Testing Regression Assumptions
linear regression has four key assumptions:

1. Linearity: The relationship between X and Y is linear
2. Independence: Observations are independent
3. Homoscedasticity: Equal variance across all values of X
4. Normality: Residuals are normally distributed

Let’s check these assumptions for the lion regression model:

    Shapiro-Wilk normality test

data:  residuals(lion_model)
W = 0.93879, p-value = 0.0692

Lecture 9: Linear Regression
Simple Linear Regression Model
linear regression has four key assumptions:

1. Linearity: The relationship between X and Y is linear
2. Independence: Observations are independent
3. Homoscedasticity: Equal variance across all values of X
4. Normality: Residuals are normally distributed

If assumptions are violated: 1. Transform the data (Section 17.6) 2. Use weighted least squares for heteroscedas-
ticity 3. Consider non-linear models (Section 17.8)
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Lecture 9: Linear Regression - estimates of error and significance
• Estimates of standard error and confidence intervals for slow and intercept to determine confidence bands

• the 95% confidence band will contain the true population line 95/100 under repeated sampling

• this is usually done in R

Lecture 9: Linear Regression - estimates of error and significance
In addition to getting estimates of population parameters (β0 , β1), want to test hypotheses about them

• This is accomplished by analysis of variance
• Partition variance in Y: due to variation in X, due to other things (error)
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Lecture 9: Linear Regression - estimates of variance
Total variation in Y is “partitioned” into 3 components:

• 𝑆𝑆𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛: variation explained by regression
‣ difference between predicted values (ŷi ) and mean y (ȳ)
‣ dfs= 1 for simple linear (parameters-1)

• 𝑆𝑆𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙: variation not explained by regression
‣ difference between observed (𝑦𝑖) and predicted (𝑦𝑖) values
‣ dfs= n-2

• 𝑆𝑆𝑡𝑜𝑡𝑎𝑙: total variation

‣ sum of squared deviations of each observation (𝑦𝑖) from mean (𝑦‾)

‣ dfs = n-1

Lecture 9: Linear Regression - estimates of variance
Total variation in Y is “partitioned” into 3 components:

• 𝑆𝑆𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛: variation explained by regression
‣ difference between predicted values (ŷi ) and mean y (ȳ)
‣ dfs= 1 for simple linear (parameters-1)

• 𝑆𝑆𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙: variation not explained by regression
‣ difference between observed (𝑦𝑖) and predicted (𝑦𝑖) values
‣ dfs= n-2

• 𝑆𝑆𝑡𝑜𝑡𝑎𝑙: total variation

‣ sum of squared deviations of each observation (𝑦𝑖) from mean (𝑦‾)
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‣ dfs = n-1

Lecture 9: Linear Regression - estimates of variance
Total variation in Y is “partitioned” into 3 components:

• 𝑆𝑆𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛: variation explained by regression
‣ GREATER IN C than D

• 𝑆𝑆𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙: variation not explained by regression
‣ GREATER IN B THAN A

• 𝑆𝑆𝑡𝑜𝑡𝑎𝑙: total variation

Lecture 9: Linear Regression - estimates of variance
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Sums of Squares and degress of freedome are:

𝑆𝑆𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛 + 𝑆𝑆𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 = 𝑆𝑆𝑡𝑜𝑡𝑎𝑙

𝑑𝑓𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛 + 𝑑𝑓𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 = 𝑑𝑓𝑡𝑜𝑡𝑎𝑙

• Sums of Squares depends on n
• We need a different estimate of variance

Lecture 9: Linear Regression - estimates of variance
Sums of Squares converted to Mean Squares

• Sums of Squares divided by degrees of freedom - does not depend on n
• 𝑀𝑆𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙: estimate population variation
• 𝑀𝑆𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛: estimate pop variation and variation due to X-Y relationship
• Mean Squares are not additive
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