
Lecture 10 - Multiple Regression

Bill Perry

Lecture 09: Review
Covered

• Regression T-Test Anova
• Regression Assumptions
• Model II Regression

Lecture 10: Overview
Multiple Linear Regression model

• Regression parameters
• Analysis of variance
• Null hypotheses
• Explained variance
• Assumptions and diagnostics
• Collinearity
• Interactions
• Dummy variables
• Model selection
• Importance of predictors

Lecture 10: Analyses
What if more than one predictor (X) variable?

• If predictors continuous
• Mix between categorical and continuous
• Can use multiple linear regression

Independent variable

Dependent variable Continuous Categorical

Continuous Regression ANOVA

Categorical Logistic regression Tabular

Lecture 10: Analyses
Abundance of C3 grasses can be modeled as function of

• latitude
• longitude
• both

Instead of line, modeled with (hyper)plane
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Lecture 10: Analyses
Used in similar way to simple linear regression:

• Describe nature of relationship between Y and X’s
• Determine explained / unexplained variation in Y
• Predict new Ys from X
• Find the “best” model
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Lecture 10: Analyses
Crawley 2012: “Multiple regression models provide some of the most profound challenges faced by the analyst”:

• Overfitting
• Parameter proliferation
• Multicollinearity
• Model selection
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Lecture 10: Analyses
Multiple Regression:

• Set of i= 1 to n observations
• fixed X-values for p predictor variables (X1, X2…Xp)
• random Y-values:

𝑦𝑖 = 𝛽0 + 𝛽1𝑥𝑖1 + 𝛽2𝑥𝑖2 + ... + 𝛽𝑝𝑥𝑖𝑝 + 𝜖𝑖

• yi: value of Y for ith observation X1 = xi1, X2 = xi2,…, Xp = xip

• β0: population intercept, the mean value of Y when X1 = 0, X2 = 0,…, Xp = 0

Lecture 10: Multiple linear regression model
Multiple Regression:

𝑦𝑖 = 𝛽0 + 𝛽1𝑥𝑖1 + 𝛽2𝑥𝑖2 + ... + 𝛽𝑝𝑥𝑖𝑝 + 𝜖𝑖

• β1: partial population slope, change in Y per unit change in X1 holding other X-vars constant

• β2: partial population slope, change in Y per unit change in X2 holding other X-vars constant

• βp: partial population slope, change in Y per unit change in Xp holding other X-vars constant

Lecture 10: Regression parameters
Multiple Regression:

𝑦𝑖 = 𝛽0 + 𝛽1𝑥𝑖1 + 𝛽2𝑥𝑖2 + ... + 𝛽𝑝𝑥𝑖𝑝 + 𝜖𝑖

• εi: unexplained error - difference bw yi and value predicted by model (ŷi)

• NPP = β0 + β1(lat) + β2 (long) + β3 (soil fertility) + εi

Lecture 10: Regression parameters
Multiple Regression:

𝑦𝑖 = 𝛽0 + 𝛽1𝑥𝑖1 + 𝛽2𝑥𝑖2 + ... + 𝛽𝑝𝑥𝑖𝑝 + 𝜖𝑖

• Estimate multiple regression parameters (intercept, partial slopes) using OLS to fit the regression line
• OLS minimize ∑(yi-ŷi)2, the SS (vertical distance) between observed yi and predicted ŷi for each xij
• ε estimated as residuals: εi = yi-ŷi
• Calculation solves set of simultaneous normal equations with matrix algebra

Lecture 10: Regression parameters
Regression equation can be used for prediction by subbing new values for predictor (X) variables

• Confidence intervals calculated for parameters

• Confidence and prediction intervals depend on number of observations and number of predictors

‣ More observations decrease interval width
‣ More predictors increase interval width

• Prediction should be restricted to within range of X variables

Lecture 10: Analyses of variance
Variance - SStotal partitioned into SSregression and SSresidual
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• SSregression is variance in Y explained by model

• SSresidual is variance not explained by model

Source of variation SS df MS Interpretation

Regression ∑𝑛
𝑖=1 (𝑦𝑖 − 𝑦‾)

2 𝑝 ∑𝑛
𝑖=1 (𝑦𝑖−𝑦‾)

2

𝑝
Difference between
predicted observa-
tion and mean

Residual ∑𝑛
𝑖=1 (𝑦𝑖 − 𝑦𝑖)

2 𝑛 − 𝑝 − 1 ∑𝑛
𝑖=1 (𝑦𝑖−𝑦𝑖)

2

𝑛−𝑝−1
Difference between
each observation
and predicted

Total ∑𝑛
𝑖=1 (𝑦𝑖 − 𝑦‾)

2 𝑛 − 1 Difference between
each observation
and mean

Lecture 10: Analyses
SS converted to non-additive MS (SS/df)

• MSresidual: estimate population variance
• MSregression: estimate population variance + variation due to strength of X-Y relationships
• MS do not depend on sample size

Source of variation SS df MS

Regression ∑𝑛
𝑖=1 (𝑦𝑖 − 𝑦‾)

2 𝑝 ∑𝑛
𝑖=1 (𝑦𝑖−𝑦‾)

2

𝑝

Residual ∑𝑛
𝑖=1 (𝑦𝑖 − 𝑦𝑖)

2 𝑛 − 𝑝 − 1 ∑𝑛
𝑖=1 (𝑦𝑖−𝑦𝑖)

2

𝑛−𝑝−1

Total ∑𝑛
𝑖=1 (𝑦𝑖 − 𝑦‾)

2 𝑛 − 1

Lecture 10: Hypotheses
Two Hos usually tested in MLR:

• “Basic” Ho: all partial regression slopes equal 0; β1 = β2 = … = βp = 0
• If “basic” Ho true, MSregression and MSresidual estimate variance and their ratio (F-ratio) = 1
• If “basic” Ho false (at least one β ≠ 0) MSregression estimates variance + partial regression slope and their ratio

(F-ratio)
• will be > 1 - F-ratio compared to F-distribution for p-value

Lecture 10: Hypotheses
Also: is any specific β = 0 (explanatory role)?

• E.g., does LAT have effect on NPP?
• These Hs tested through model comparison
• Model w 3 predictors X1, X2,X3 (model 1):
• yi= β0 +β1xi1+β2xi2+β3xi3+ εi
• To test Ho that β1 = 0 compare fit of model 1 to model 2:
• yi= β0 +β2xi2+β3xi3+ εi

Lecture 10: Hypotheses
• If SSregression of mod1=mod2, cannot reject Ho β1 = 0
• If SSregression of mod1 > mod2, evidence to reject Ho β1 = 0
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• SS for β1 is SSextraβ1 = Full SSregression - Reduced SSregression
• Use partial F-test to test Ho β1 = 0 :

𝐹𝑤,𝑛−𝑝 =
𝑀𝑆𝐸𝑥𝑡𝑟𝑎

𝐹𝑈𝐿𝐿 𝑀𝑆𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙

Can also use t-test (R provides this value)

Lecture 10: Explained variance
Explained variance (r2) is calculated the same way as for simple regression:

𝑟2 =
𝑆𝑆𝑅𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛

𝑆𝑆𝑇𝑜𝑡𝑎𝑙
= 1 −

𝑆𝑆𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙
𝑆𝑆𝑇𝑜𝑡𝑎𝑙

• r2 values can not be used to directly compare models
• r2 values will always increase as predictors added
• r2 values with different transformation will differ

Lecture 10: Assumptions and diagnostics
• Assume fixed Xs; unrealistic in most biological settings
• No major (influential) outliers
• Check leverage, influence- Cook’s Di

Lecture 10: Assumptions and diagnostics
• Normality, equal variance, independence
• Residual QQ-plots, residuals vs. predicted values plot
• Distribution/variance often corrected by transforming Y
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Lecture 10: Assumptions and diagnostics
More observations than predictor variables

• Ideally at least 10x observations than predictors to avoid “overfitting”
• Uncorrelated predictor variables (assessed using scatterplot matrix; VIFs)
• Linear relationship between Y and each X, holding others constant (non-linearity assessed by AV plots)

Lecture 10: Analyses
Regression of Y vs. each X does not consider effect of other predictors:

want to know shape of relationship while holding other predictors constant
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Lecture 10: Collinearity
• Potential predictor variables are often correlated (e.g., morphometrics, nutrients, climatic parameters)
• Multicollinearity (strong correlation between predictors) causes problems for parameter estimates
• Severe collinearity causes unstable parameter estimates: small change in a single value can result in large

changes in βp - estimates
• Inflates partial slope error estimates, loss of power

Lecture 10: Collinearity
Collinearity can be detected by:

• Variance inflation Factors:

‣ VIF for Xj=1/ (1-r2 )
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‣ VIF > 10 = bad

• Best/simplest solution:

‣ exclude variables that are highly correlated with other variables
‣ they are probably measuring similar
‣ thing and are redundant

Lecture 10: Interactions
Predictors can be modeled as:

• additive (effect of temp, plus precip, plus fertility) or
• multiplicative (interactive)
• Interaction: effect of Xi depends on levels of Xj
• The partial slope of Y vs. X1 is different for different levels of X2 (and vice versa); measured by β3

𝑦𝑖 = 𝛽0 + 𝛽1𝑋𝑖1 + 𝛽2𝑋𝑖2 + 𝜖𝑖 vs. 𝑦𝑖 = 𝛽0 + 𝛽1𝑋𝑖1 + 𝛽2𝑋𝑖2 + +𝛽3𝑋𝑖3𝜖𝑖

“Curvature” of the regression (hyper)plane

Lecture 10: Analyses

Lecture 10: Analyses
Adding interactions:

• many more predictors (“parameter proliferation”):
• 2n; 6 params= 64 terms; 7 params= 128
• interpretation more complex
• When to include interactions? When they make biological sense

Lecture 10: Dummy variables
Multiple Linear Regression accommodates continuous and categorical variables (gender, vegetation type, etc.)
Categorical vars as “dummy vars”, n of dummy variables = n-1 categories

Sex M/F:
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• Need 1 dummy var with two values (0, 1)

Fertility L/M/H:

• Need 2 dummy var, each with two values (0, 1): fert1 (0 if L or H, 1 if M), fert2 (1 if H, 0 if L or M)

Fertility fert1 fert2

Low 0 0

Med 1 0

High 0 1

Lecture 10: Analyses
Coefficients interpreted relative to reference condition

• R codes dummy variables automatically
• picks “reference” level alphabetically
• Dummy variables with more than 2 levels add extra predictor variables to model

Fertility fert1 fert2

Low 0 0

Med 1 0

High 0 1

Lecture 10: Analyses
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Lecture 10: Comparing models
When have multiple predictors (and interactions!)

• how to choose “best” model?
• Which predictors to include?
• Occam’s razor: “best” model balances complexity with fit to data

To chose:

• compare “nested” models

Overfitting

• getting high r2 just by having more (useless predictors)
• so r2 is not a good way of choosing between nested models

Lecture 10: Comparing models
Need to account for increase in fit with added predictors:

• Adjusted r2
• Akaike’s information criterion (AIC)
• Both “penalize” models for extra predictors
• Higher adjusted r2 and lower AIC are better when comparing models

Adjusted 𝑟2 = 1 −
𝑆𝑆Residual/(𝑛 − (𝑝 + 1))

𝑆𝑆Total/(𝑛 − 1)

Akaike Information Criterion (AIC) = 𝑛[ln(𝑆𝑆Residual)] + 2(𝑝 + 1) − 𝑛 ln(𝑛)

Lecture 10: Comparing models
But how to compare models?

• Can fit all possible models

‣ compare AICs or adj- r2,
‣ tedious w lots of predictors

• Automated forward (and backward) stepwise procedures: start w no terms (all terms), add (remove) terms w
largest (smallest)

‣ partial F statistic
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We will use manual form of backward selection

Lecture 10: Analyses

Lecture 10: Predictors
Usually want to know relative importance of predictors to explaining Y

• Three general approaches:
• Using F-tests (or t-tests) on partial regression slopes
• Using coefficient of partial determination
• Using standardized partial regression slopes

Lecture 10: Predictors
Using F-tests (or t-tests) on partial regression slopes:

• Conduct F tests of Ho that each partial regression slope = 0
• If cannot reject Ho, discard predictor
• Can get additional clues from relative size of F-values
• Does not tell us absolute importance of predictor (usually can not directly compare slope parameters)

Lecture 10: Predictors
Using coefficient of partial determination:

• the reduction in variation of Y due to addition of predictor (Xj)

𝑟2
𝑋𝑗

=
𝑆𝑆Extra

Reduced 𝑆𝑆Residual

SSextra

• Increased in SSregression when Xj is added to model

• Reduced SSresidual is the unexplained SS from model without Xj
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Lecture 10: Predictors
Using standardized partial regression slopes:

• predictors of predictor variables can not be directly compared
• Why?
• Standardize all vars (mean = 0, sd= 1)
• Scales are identical and larger PRS mean more important variable

Lecture 10: Predictors
Using partial r2 values:

Lecture 10: Reporting results
Results are easiest to report in tabular format
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Lecture 10: Reporting results
Results are easiest to report in tabular format
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