
Lecture 15 - ANCOVA

Bill Perry

Lecture 14: Review
Review
General Linearized Models (GLM)

• Gaussian GLMs (normal distribution)
• Poisson GLMs (count data)
• Logistic GLMs (binary outcomes)
• Model assumptions and diagnostics
• Connection to ANOVA and linear models

Lecture 15: ANCOVA Overview
Overview
Analysis of covariance (ANCOVA):

• Introduction to ANCOVA
• When to use ANCOVA
• Linear model for ANCOVA
• Analysis of variance in ANCOVA
• Assumptions of ANCOVA

‣ Homogeneous slopes
• Robust ANCOVA approaches
• Specific comparisons of means
• Examples and interpretation
• Scientific reporting of ANCOVA results

Introduction to ANCOVA
What is ANCOVA?
• ANCOVA = Analysis of COVAriance
• Combination of regression and ANOVA
• A continuous covariate is measured along with the response variable for each experimental unit
• Common use: compare means of factor levels (groups), adjusting for variance from continuous covariate
• Another use: determine whether two or more regression lines differ in slopes and intercepts
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When to Use ANCOVA
Common Applications of ANCOVA
• Increasing statistical power

‣ Removing variation associated with a covariate can reduce residual error
‣ More powerful test of treatment effects

• Adjusting for confounding variables
‣ When treatments might differ in some continuous variable
‣ Need to separate treatment effects from covariate effects

• Testing equality of regression lines
‣ Do treatments have the same relationship with a continuous variable?
‣ Tests for both slopes and intercepts

ANCOVA Example: Cricket Chirping
Cricket Chirping Example
Want to compare chirping rate of two cricket species:

• Oecanthus exclamationis
• Oecanthus niveus

But:

• Measured rates at different temperatures
• Range of temperatures differed between species
• Apparent relationship between pulse rate and temperature

ANCOVA lets us adjust for temperature effect to get a more powerful test!
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ANCOVA Linear Model: Conceptual Framework
The ANCOVA Model
Key concept in ANCOVA: the difference between “unadjusted” group means and “adjusted” means.

In this visualization:

• Group Means (shown as asterisks): raw/unadjusted means for each group - simply the average X value and
average Y value for all points in that group. Notice that Group A and Group B have different mean X values
(they’re positioned at different points along the X axis).

• Adjusted Means (shown as triangles): These are what ANCOVA actually compares. The adjusted means repre-
sent what each group’s mean would be if all groups had the same value of the covariate (in this case, the overall
mean X).

The core purpose of ANCOVA is to make this adjustment. This is important because:

• When groups differ in their covariate values (as they often do in observational studies or even in experiments
with random assignment), comparing raw means can be misleading

• The adjustment helps “level the playing field” by estimating what each group’s mean would be if they all had
the same value of the covariate
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ANCOVA Model Visualization

Mathematical Model for ANCOVA
For a single-factor ANCOVA with factor A (p levels, i = 1 to p), a continuous covariate (x), and response variable
(y):

𝑌𝑖𝑗 = 𝜇 + 𝛼𝑖 + 𝛽(𝑋𝑖𝑗 −𝑋‾) + 𝜀𝑖𝑗
Where: - 𝑌𝑖𝑗 = response value for observation j in level i of factor A - 𝜇 = overall mean - 𝛼𝑖 = effect of level i of
factor A - 𝛽 = common regression slope relating Y to X - 𝑋𝑖𝑗 = covariate value for observation j in level i of factor
A - 𝑋‾ = mean value of covariate - 𝜀𝑖𝑗 = error term

ANCOVA Parameters Interpretation
Interpretation of Parameters
• 𝜇 = overall mean response
• 𝛼𝑖 = effect of level i (difference between group mean and overall mean)
• 𝛽 = pooled within-group regression coefficient
• 𝑋𝑖𝑗 = covariate value for observation j in group i
• 𝑋‾ = overall mean of covariate
• 𝜀𝑖𝑗 = unexplained error

This model assumes homogeneous slopes across all treatment groups (we’ll test this later).
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ANCOVA in R: Basic Implementation
Running ANCOVA in R
Basic ANCOVA model: - Response: continuous variable (y) - Predictor: categorical factor (A)
- Covariate: continuous variable (x)

The simplest ANCOVA model is:

model <- lm(y ~ A + x, data = mydata)
anova(model)

Alternative: use aov() function

model <- aov(y ~ A + x, data = mydata)  
summary(model)

Both approaches use Type I SS (sequential). For unbalanced designs, you may want Type III SS using car package.

# Load the partridge dataset
partridge <- read.csv("data/partridge.csv")

# Look at the first few rows
head(partridge)

  PARTNERS TYPE TREATMEN LONGEV  LLONGEV THORAX     RESID1 PREDICT1      RESID2
1        8    0        1     35 1.544068   0.64  -5.868456 40.86846 -0.04743024
2        8    0        1     37 1.568202   0.68  -9.301196 46.30120 -0.07105067
3        8    0        1     49 1.690196   0.68   2.698804 46.30120  0.05094369
4        8    0        1     46 1.662758   0.72  -5.733936 51.73394 -0.02424867
5        8    0        1     63 1.799341   0.72  11.266064 51.73394  0.11233405
6        8    0        1     39 1.591065   0.76 -18.166676 57.16668 -0.14369601
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  PREDICT2
1 1.591498
2 1.639252
3 1.639252
4 1.687007
5 1.687007
6 1.734761

# Create factors for treatment
partridge$TREATMEN <- as.factor(partridge$TREATMEN)

# Basic ANCOVA model
model1 <- lm(LONGEV ~ THORAX + TREATMEN, 
            data = partridge)

# View ANOVA table with Type I SS
anova(model1)

Analysis of Variance Table

Response: LONGEV
           Df  Sum Sq Mean Sq F value    Pr(>F)
THORAX      1 15496.6 15496.6 140.293 < 2.2e-16 ***
TREATMEN    4  9611.5  2402.9  21.753 1.719e-13 ***
Residuals 119 13144.7   110.5
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

ANCOVA in R: Type III Sum of Squares
Using Type III SS from car package:

# Using Type III SS from car package
model2 <- lm(LONGEV ~ TREATMEN + THORAX, 
            data = partridge)
Anova(model2, type = "III")

Anova Table (Type III tests)

Response: LONGEV
             Sum Sq  Df F value    Pr(>F)
(Intercept)  2234.9   1  20.233 1.605e-05 ***
TREATMEN     9611.5   4  21.753 1.719e-13 ***
THORAX      13168.9   1 119.219 < 2.2e-16 ***
Residuals   13144.7 119
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The Type III approach is often preferred for: - Unbalanced designs - When you want to test each effect adjusted
for all others - More conservative approach when groups differ in covariate values
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Analysis of Variance for ANCOVA: Partitioning

ANOVA Table for ANCOVA
The ANOVA table for a single-factor ANCOVA has these components:

Null Hypotheses in ANCOVA
1. Treatment Effect (adjusted for covariate) 𝐻0 : 𝛼1 = 𝛼2 = ... = 𝛼𝑝 = 0

• Are the adjusted group means equal?
• Test with F = MS_A(adj)/MS_Residual

2. Covariate Effect 𝐻0 : 𝛽 = 0

• Is there a relationship between the covariate and the response?
• Test with F = MS_Covariate/MS_Residual

3. Homogeneity of Slopes (test this first!) 𝐻0 : 𝛽1 = 𝛽2 = ... = 𝛽𝑝
• Are the regression slopes the same for all groups?
• Test by adding group*covariate interaction term
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Testing Homogeneity of Slopes
Testing for Homogeneous Slopes
ANCOVA assumes the regression slopes are the same for all groups (parallel regression lines)

To test this assumption:

1. Fit model with interaction term:

model_int <- lm(y ~ A * x, data = mydata)

2. Test significance of interaction:

anova(model_int)

3. If interaction is significant (p < 0.05):
• Slopes are not homogeneous
• Standard ANCOVA inappropriate
• Use alternative approaches

# Test homogeneity of slopes in partridge data
# by adding interaction term
model_int <- lm(LONGEV ~ TREATMEN * THORAX, 
               data = partridge)

# Test significance of interaction
anova(model_int)

Analysis of Variance Table

Response: LONGEV
                 Df  Sum Sq Mean Sq  F value    Pr(>F)
TREATMEN          4 11939.3  2984.8  26.1983 1.896e-15 ***
THORAX            1 13168.9 13168.9 115.5855 < 2.2e-16 ***
TREATMEN:THORAX   4    42.5    10.6   0.0933    0.9844
Residuals       115 13102.1   113.9
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

# Extract p-value for interaction
interaction_pvalue <- anova(model_int)[3, "Pr(>F)"]

The p-value for the interaction is 0.984. Since p > 0.05, we can proceed with standard ANCOVA (assuming homo-
geneous slopes).
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Visualization of Homogeneity of Slopes
Parallel vs. Non-Parallel Slopes

Handling Heterogeneous Slopes
When Slopes Are Not Homogeneous
If the interaction term is significant (p < 0.05), the slope-group relationship is not the same across groups.

Options:

1. Report the interaction - this is a biologically interesting result!

2. Separate regressions - analyze each group separately

3. Johnson-Neyman procedure - identifies regions of the covariate where groups differ significantly

4. Alternative models - consider transformation, polynomial terms, or more complex models
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Partridge Example: Data Overview
ANCOVA on Longevity of Male Fruitflies

# 1. Examine the partridge data structure
# str(partridge)

# Create better names for treatments
partridge$treatment <- factor(partridge$TREATMEN,
                            levels = 1:5,
                            labels = c("No females", 
                                      "One virgin female daily",
                                      "Eight virgin females daily",
                                      "One inseminated female daily",
                                      "Eight inseminated females daily"))

# 2. Create a plot of the data showing relationship
ggplot(partridge, aes(x = THORAX, y = LONGEV, color = treatment)) + 
  geom_point() +
  geom_smooth(method = "lm", se = FALSE) +
  labs(title = "Relationship between Thorax Length and Longevity",
       x = "Thorax Length (mm)",
       y = "Longevity (days)",
       color = "Treatment") +
  theme_minimal() +
  theme(legend.position = "bottom")
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Partridge Example: Testing Homogeneity
Testing Homogeneity of Slopes

# Test for homogeneity of slopes
homo_slopes_model <- lm(LONGEV ~ THORAX * treatment, data = partridge)
anova(homo_slopes_model)

Analysis of Variance Table

Response: LONGEV
                  Df  Sum Sq Mean Sq  F value    Pr(>F)
THORAX             1 15496.6 15496.6 136.0170 < 2.2e-16 ***
treatment          4  9611.5  2402.9  21.0905 4.617e-13 ***
THORAX:treatment   4    42.5    10.6   0.0933    0.9844
Residuals        115 13102.1   113.9
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

# Extract the p-value for the interaction
p_interaction <- anova(homo_slopes_model)[3, "Pr(>F)"]

The p-value for the interaction term (treatment × THORAX) is 0.984. Since this value is > 0.05, we can assume
homogeneous slopes and proceed with the standard ANCOVA.

Partridge Example: Full ANCOVA Analysis
# Fit the ANCOVA model (without interaction)
ancova_model <- lm(LONGEV ~ THORAX + treatment, data = partridge)
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# View ANOVA table
anova(ancova_model)

Analysis of Variance Table

Response: LONGEV
           Df  Sum Sq Mean Sq F value    Pr(>F)
THORAX      1 15496.6 15496.6 140.293 < 2.2e-16 ***
treatment   4  9611.5  2402.9  21.753 1.719e-13 ***
Residuals 119 13144.7   110.5
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

# Get more detailed summary
summary(ancova_model)

Call:
lm(formula = LONGEV ~ THORAX + treatment, data = partridge)

Residuals:
    Min      1Q  Median      3Q     Max
-26.189  -6.599  -0.989   6.408  30.244

Coefficients:
                                         Estimate Std. Error t value Pr(>|t|)
(Intercept)                               -46.055     10.239  -4.498 1.61e-05
THORAX                                    135.819     12.439  10.919  < 2e-16
treatmentOne virgin female daily           -3.929      2.997  -1.311 0.192347
treatmentEight virgin females daily        -1.276      2.983  -0.428 0.669517
treatmentOne inseminated female daily     -10.946      2.999  -3.650 0.000391
treatmentEight inseminated females daily  -23.879      2.973  -8.031 7.83e-13

(Intercept)                              ***
THORAX                                   ***
treatmentOne virgin female daily
treatmentEight virgin females daily
treatmentOne inseminated female daily    ***
treatmentEight inseminated females daily ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 10.51 on 119 degrees of freedom
Multiple R-squared:  0.6564,    Adjusted R-squared:  0.6419
F-statistic: 45.46 on 5 and 119 DF,  p-value: < 2.2e-16

# Get adjusted means using emmeans
adjusted_means <- emmeans(ancova_model, "treatment")
adjusted_means

 treatment                       emmean   SE  df lower.CL upper.CL
 No females                        65.4 2.11 119     61.3     69.6
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 One virgin female daily           61.5 2.11 119     57.3     65.7
 Eight virgin females daily        64.2 2.10 119     60.0     68.3
 One inseminated female daily      54.5 2.11 119     50.3     58.7
 Eight inseminated females daily   41.6 2.12 119     37.4     45.8

Confidence level used: 0.95

Partridge Example: Pairwise Comparisons
Pairwise Comparisons of Adjusted Means

# Pairwise comparisons of adjusted means
pairs(adjusted_means, adjust = "tukey")

 contrast                                                       estimate   SE
 No females - One virgin female daily                               3.93 3.00
 No females - Eight virgin females daily                            1.28 2.98
 No females - One inseminated female daily                         10.95 3.00
 No females - Eight inseminated females daily                      23.88 2.97
 One virgin female daily - Eight virgin females daily              -2.65 2.98
 One virgin female daily - One inseminated female daily             7.02 2.97
 One virgin female daily - Eight inseminated females daily         19.95 3.01
 Eight virgin females daily - One inseminated female daily          9.67 2.98
 Eight virgin females daily - Eight inseminated females daily      22.60 2.99
 One inseminated female daily - Eight inseminated females daily    12.93 3.01
  df t.ratio p.value
 119   1.311  0.6849
 119   0.428  0.9929
 119   3.650  0.0035
 119   8.031  <.0001
 119  -0.891  0.8996
 119   2.361  0.1336
 119   6.636  <.0001
 119   3.249  0.0129
 119   7.560  <.0001
 119   4.298  0.0003

P value adjustment: tukey method for comparing a family of 5 estimates

# Plot adjusted means with confidence intervals
plot(adjusted_means, comparisons = TRUE) + 
  labs(title = "Adjusted Means by Treatment",
       x = "Adjusted Longevity (days)",
       y = "Treatment") +
  theme_minimal()
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Visualizing ANCOVA Results
Visualization Options for ANCOVA

Sea Urchin Example: Heterogeneous Slopes
Heterogeneous Slopes Example
Constable (1993) studied shrinking in sea urchin test: - Compared suture widths between treatments - Three
groups: high food, low food, initial sample - Covariate: body volume (cube root transformed)

The analysis showed: - Significant interaction between treatment and covariate - Heterogeneous slopes across
treatments - Can’t use standard ANCOVA
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Johnson-Neyman Procedure
Johnson-Neyman Procedure for Heterogeneous Slopes

Analysis of Variance Table

Response: suture_width
                 Df   Sum Sq   Mean Sq F value    Pr(>F)
volume            1 0.015724 0.0157238  176.91 < 2.2e-16 ***
treatment         2 0.036482 0.0182411  205.23 < 2.2e-16 ***
volume:treatment  2 0.006213 0.0031064   34.95 4.453e-11 ***
Residuals        66 0.005866 0.0000889
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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Interpretation of Heterogeneous Slopes
When you have heterogeneous slopes, the Johnson-Neyman procedure identifies regions of the covariate where
groups differ:

1. Initial > Low Food when cube root body volume > 2.95
• For large urchins, the initial sample has wider sutures than low food urchins

2. High Food > Initial when cube root body volume > 1.81
• For most urchins, high food treatment results in wider sutures than initial samples

3. High Food > Low Food when cube root body volume > 2.07
• For most medium to large urchins, high food results in wider sutures than low food

The biological interpretation is that food regime affects suture width differently depending on urchin size.
This interaction is biologically meaningful and would be missed if we only looked at adjusted means!

Assumptions of ANCOVA
Key Assumptions
1. Independence of observations

• Samples are random and independent
• No clustering or repeated measures

2. Normal distribution of residuals
• Residuals follow a normal distribution
• Check with QQ plots or formal tests

3. Homogeneity of variances
• Equal variances across groups
• Check with residual plots vs. fitted values

4. Linearity
• Linear relationship between Y and X within each group
• Check with scatterplots

5. Homogeneity of regression slopes (critical!)
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• Regression slopes equal across all groups
• Test with interaction term

Checking Assumptions in R
Checking Assumptions in R

# Fit ANCOVA model for partridge data
ancova_model <- lm(LONGEV ~ THORAX + treatment, data = partridge)

# Create a 2x2 panel of diagnostic plots
par(mfrow = c(2, 2))
plot(ancova_model)

Robust ANCOVA Approaches
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Non-Parametric Alternatives
When ANCOVA assumptions are violated, consider:

1. Rank Transformation
• Rank transform both Y and X variables
• Run standard ANCOVA on ranked data
• Simple but may not handle interactions well

2. ANCOVA on Bootstrapped Data
• Use bootstrapping to estimate parameters
• Doesn’t require normality assumption

3. Quantile Regression
• Models relationships at different quantiles
• Robust to outliers and heteroscedasticity

4. Permutation Tests
• Randomization tests of treatment effects
• No distributional assumptions

# Example of rank-transformed ANCOVA
partridge$rank_LONGEV <- rank(partridge$LONGEV)
partridge$rank_THORAX <- rank(partridge$THORAX)

# Fit ANCOVA on ranked data
rank_ancova <- lm(rank_LONGEV ~ 
                  rank_THORAX + treatment, 
                data = partridge)
anova(rank_ancova)

Analysis of Variance Table

Response: rank_LONGEV
             Df Sum Sq Mean Sq F value    Pr(>F)
rank_THORAX   1  63622   63622 129.511 < 2.2e-16 ***
treatment     4  40447   10112  20.584 6.536e-13 ***
Residuals   119  58458     491
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

# Compare p-values with parametric ANCOVA
cat("P-value for treatment effect (parametric):", 
    round(anova(ancova_model)[2, "Pr(>F)"], 4), "\n")

P-value for treatment effect (parametric): 0

cat("P-value for treatment effect (rank-based):", 
    round(anova(rank_ancova)[2, "Pr(>F)"], 4))

P-value for treatment effect (rank-based): 0

# Permutation test example using lmPerm package
# library(lmPerm)
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# perm_ancova <- lmp(LONGEV ~ 
#                   THORAX + treatment,
#                   data = partridge, 
#                   perm = "Prob")
# summary(perm_ancova)

Note: The permutation test is commented out as it requires the lmPerm package, which may not be installed. The
rank-based approach is shown as a simple alternative.

Writing Up ANCOVA Results
Scientific Writing Example
Here’s how you might write up ANCOVA results for publication:

“We analyzed the effects of mating strategy on male fruitfly longevity using analysis of covariance (AN-
COVA), with thorax length as a covariate. Before conducting the main analysis, we tested the homogeneity
of slopes assumption and found no significant interaction between treatment and thorax length (F₄,₁₁₅ = 1.56,
P = 0.19), indicating that the effect of body size on longevity was consistent across treatments.

The ANCOVA revealed significant effects of both treatment (F₄,₁₁₉ = 27.97, P < 0.001) and thorax length (F₁,₁₁₉
= 145.44, P < 0.001) on longevity. Thorax length was positively associated with longevity (b = 1.19), with larger
males living longer. After adjusting for body size, males with no female partners lived significantly longer
(adjusted mean ± SE: 1.81 ± 0.02 log₁₀ days) than males in any other treatment group. Males provided with a
single virgin female daily (1.77 ± 0.02) or a single inseminated female daily (1.79 ± 0.02) showed intermediate
longevity, while males with eight females per day showed the lowest longevity (1.72 ± 0.02 for inseminated
females; 1.59 ± 0.02 for virgin females). Pairwise comparisons using Tukey’s HSD test indicated significant
differences between all treatment groups (P < 0.05) except between the two treatments with a single female
per day (P = 0.42).”
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Publication Quality Figure

Summary
Key Principles
1. Purpose:

• ANCOVA combines regression and ANOVA approaches
• Increases power by accounting for continuous covariates
• Allows comparison of adjusted means

2. The Analysis
• Always test for homogeneity of slopes first!
• If slopes are homogeneous, proceed with standard ANCOVA
• If slopes are heterogeneous, use alternatives (Johnson-Neyman procedure)

3. Interpretation
• Focus on adjusted means (at mean covariate value)
• Consider both statistical and biological significance
• Visualize results clearly with appropriate graphs

Assumptions
1. Independence of observations
2. Normal distribution of residuals
3. Homogeneity of variances
4. Linearity of relationships within groups
5. Homogeneity of regression slopes
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