Lecture 17 - Principal Component Analysis (PCA)

Bill Perry

Lecture 16: Review

Review

- · Multivariate data
- Multivariate statistics in ecology: overview
- Eigenvectors, eigenvalues, components
- Distance and dissimilarity in MV space
- Data standardization
- Graphics
- · Screening MV data
- MANOVA

Review: Eigenvectors and Components

Eigenvectors, eigenvalues and components

- Common goal of MV analysis is variable reduction: can we derive new variables (based on linear combinations of "original" variables) that explain variation in data?
- For data set with i=1 to n objects and j=1 to p original variables we seek new variables (principal components) using the equation:

$$z_{ik} = c_1 y_{i1} + c_2 y_{i2} + \cdots + c_j y_{ij} + \cdots + c_p y_{ip}$$

Review: Component Interpretation

• zik is value of new variable k for object I

- yi1- yip are values of original variables for object i
- c1-cp are coefficients that show importance of the original variables to new derived variable

$$z_{ik} = c_1 y_{i1} + c_2 y_{i2} + \cdots c_j y_{ij} + \cdots + c_p y_{ip}$$

Review: Component Properties

Eigenvectors, eigenvalues and components

Derived variables are found so that:

- First derived variable explains most of the variation in the data
- Second most of the remaining variation
- And so on...
- As many derived variables as original variables (p)
- Derived variables are uncorrelated with each other

Review: Eigenvalues and Eigenvectors

Eigenvectors, eigenvalues and components

- Eigenvalues (latent roots) represent amount of variation in data explained by the new k=1 to p derived variables $(\lambda 1, \lambda 2 ... \lambda p)$.
- Eigenvalues are population parameters and are estimated using ML to get sample statistics (l1, l2...lp)
- Eigenvectors are lists of coefficients (c) that show contribution of original variables to new, derived variables
- Each new variable has an eigenvalue and an eigenvector
- New variables (components) are derived from a p x p covariance or correlation matrix of original variables

Lecture 17: PCA Goals and Introduction

- Common goals of MV data analysis are variable reduction (finding derived variables that summarize data) and exploration of patterns in data (scaling/ordination)
- Can use association (correlation/ covariance) matrices (PCA) or dissimilarity measures (MDS)
- In PCA: take p old variables and transform them into p "new/derived" uncorrelated variables (principal components)

Data for PCA Analysis

```
# Load the iris dataset
iris_df <- iris %>% clean_names() %>% mutate(ind = row_number()) %>%
    mutate(species_ind = paste(species, ind, sep="_"))

# get values only
iris_data <- iris_df %>% select(-species, -ind, -species_ind)

# Keep species for later visualization
iris_species <- iris_df %>% select(species, ind, species_ind)

# pivot to long formt for viewing
iris_long_df <- iris_df %>%
    pivot_longer(
    cols = -c(species, ind, species_ind),
    names_to = "variable",
    values_to = "values")

iris_df
```

	sepal length	sepal_width p	etal length	petal width	species	ind
1		3.5	1.4	0.2	setosa	1
2	4.9	3.0	1.4	0.2	setosa	2
3	4.7	3.2	1.3	0.2	setosa	3
4	4.6	3.1	1.5	0.2	setosa	4
5	5.0	3.6	1.4	0.2	setosa	5
6	5.4	3.9	1.7	0.4	setosa	6
7	4.6	3.4	1.4	0.3	setosa	7
8		3.4	1.5	0.2	setosa	8
Ö	4.4	2.9	1.4	0.2	setosa	9
1	.0 4.9	3.1	1.5	0.1	setosa	10
1	.1 5.4	3.7	1.5	0.2	setosa	11
1	.2 4.8	3.4	1.6	0.2	setosa	12
1	.3 4.8	3.0	1.4	0.1	setosa	13
1	.4 4.3	3.0	1.1	0.1	setosa	14
1	.5 5.8	4.0	1.2	0.2	setosa	15

16	5.7	4.4	1.5	0.4 setosa 16
17	5.4	3.9	1.3	0.4 setosa 17
18	5.1	3.5	1.4	0.3 setosa 18
19	5.7	3.8	1.7	0.3 setosa 19
20	5.1	3.8	1.5	0.3 setosa 20
21			1.7	
	5.4	3.4		0.2 setosa 21
22	5.1	3.7	1.5	0.4 setosa 22
23	4.6	3.6	1.0	0.2 setosa 23
24	5.1	3.3	1.7	0.5 setosa 24
25	4.8	3.4	1.9	0.2 setosa 25
26	5.0	3.0	1.6	0.2 setosa 26
27	5.0	3.4	1.6	0.4 setosa 27
28	5.2	3.5	1.5	0.2 setosa 28
29	5.2	3.4	1.4	0.2 setosa 29
30	4.7	3.2	1.6	0.2 setosa 30
31	4.8	3.1	1.6	0.2 setosa 31
32	5.4	3.4	1.5	0.4 setosa 32
33	5.2	4.1	1.5	0.1 setosa 33
34	5.5	4.2	1.4	0.2 setosa 34
35	4.9	3.1	1.5	0.2 setosa 35
36	5.0	3.2	1.2	0.2 setosa 36
37	5.5	3.5	1.3	0.2 setosa 37
38	4.9	3.6	1.4	0.1 setosa 38
39	4.4	3.0	1.3	0.2 setosa 39
40	5.1	3.4	1.5	0.2 setosa 40
41	5.0	3.5	1.3	0.3 setosa 41
42	4.5	2.3	1.3	0.3 setosa 42
43	4.4	3.2	1.3	0.2 setosa 43
44	5.0	3.5	1.6	0.6 setosa 44
45	5.1	3.8	1.9	0.4 setosa 45
46	4.8	3.0	1.4	0.3 setosa 46
47				
	5.1	3.8	1.6	0.2 setosa 47
48	4.6	3.2	1.4	0.2 setosa 48
49	5.3	3.7	1.5	0.2 setosa 49
50	5.0	3.3	1.4	0.2 setosa 50
51	7.0	3.2	4.7	1.4 versicolor 51
52	6.4	3.2	4.5	1.5 versicolor 52
53	6.9	3.1	4.9	1.5 versicolor 53
54	5.5	2.3	4.0	1.3 versicolor 54
55	6.5	2.8	4.6	1.5 versicolor 55
56	5.7	2.8	4.5	1.3 versicolor 56
57	6.3	3.3	4.7	1.6 versicolor 57
58	4.9	2.4	3.3	1.0 versicolor 58
59	6.6	2.9	4.6	1.3 versicolor 59
60	5.2	2.7	3.9	1.4 versicolor 60
61	5.0	2.0	3.5	1.0 versicolor 61
62	5.9	3.0	4.2	1.5 versicolor 62
63	6.0	2.2	4.0	1.0 versicolor 63
64	6.1	2.9	4.7	1.4 versicolor 64
65	5.6	2.9	3.6	1.3 versicolor 65
66	6.7	3.1	4.4	1.4 versicolor 66
67	5.6	3.0	4.5	1.5 versicolor 67
68	5.8	2.7	4.1	1.0 versicolor 68
69	6.2	2.2	4.5	1.5 versicolor 69
70	5.6	2.5	3.9	1.1 versicolor 70
70	5.9	3.2	4.8	1.8 versicolor 71
71 72	6.1	2.8	4.0	1.3 versicolor 72
12	0.1	2.0	4.0	1.3 VCI 31CU (UI /Z

73	6.3	2.5	4.9	1.5 versicolor 73
74	6.1	2.8	4.7	1.2 versicolor 74
 75	6.4	2.9	4.3	1.3 versicolor 75
76	6.6	3.0	4.4	1.4 versicolor 76
77	6.8	2.8	4.8	1.4 versicolor 77
78	6.7	3.0	5.0	1.7 versicolor 78
79	6.0	2.9	4.5	1.5 versicolor 79
80	5.7	2.6	3.5	1.0 versicolor 80
81	5.5	2.4	3.8	1.1 versicolor 81
82	5.5	2.4	3.7	1.0 versicolor 82
83	5.8	2.7	3.9	1.2 versicolor 83
84	6.0	2.7	5.1	1.6 versicolor 84
85	5.4	3.0	4.5	1.5 versicolor 85
86	6.0	3.4	4.5	1.6 versicolor 86
87	6.7	3.1	4.7	1.5 versicolor 87
88	6.3	2.3	4.4	1.3 versicolor 88
89	5.6	3.0	4.1	1.3 versicolor 89
90	5.5	2.5	4.0	1.3 versicolor 90
91	5.5	2.6	4.4	1.2 versicolor 91
92	6.1	3.0	4.6	1.4 versicolor 92
93	5.8	2.6	4.0	1.2 versicolor 93
94	5.0	2.3	3.3	1.0 versicolor 94
95	5.6	2.7	4.2	1.3 versicolor 95
96	5.7	3.0	4.2	1.2 versicolor 96
97	5.7		4.2	1.3 versicolor 97
		2.9		1.3 versicolor 98
98	6.2	2.9	4.3	
99	5.1	2.5	3.0	1.1 versicolor 99
100	5.7	2.8	4.1	1.3 versicolor 100
101	6.3	3.3	6.0	2.5 virginica 101
102	5.8	2.7	5.1	1.9 virginica 102
103	7.1	3.0	5.9	2.1 virginica 103
104	6.3	2.9	5.6	1.8 virginica 104
105	6.5	3.0	5.8	2.2 virginica 105
106	7.6	3.0	6.6	2.1 virginica 106
107	4.9	2.5	4.5	1.7 virginica 107
108	7.3	2.9	6.3	1.8 virginica 108
109	6.7	2.5	5.8	1.8 virginica 109
110	7.2	3.6	6.1	2.5 virginica 110
111	6.5	3.2	5.1	2.0 virginica 111
112	6.4	2.7	5.3	1.9 virginica 112
113	6.8	3.0	5.5	2.1 virginica 113
114	5.7	2.5	5.0	2.0 virginica 114
115	5.8	2.8	5.1	2.4 virginica 115
116	6.4	3.2	5.3	2.3 virginica 116
117	6.5	3.0	5.5	1.8 virginica 117
118	7.7	3.8	6.7	2.2 virginica 118
119	7.7	2.6	6.9	2.3 virginica 119
120	6.0	2.2	5.0	1.5 virginica 120
121	6.9	3.2	5.7	2.3 virginica 121
122	5.6	2.8	4.9	2.0 virginica 122
123	7.7	2.8	6.7	2.0 virginica 123
124	6.3	2.7	4.9	1.8 virginica 124
125	6.7	3.3	5.7	2.1 virginica 125
126	7.2	3.2	6.0	1.8 virginica 126
127	6.2	2.8	4.8	1.8 virginica 127
128	6.1	3.0	4.9	1.8 virginica 128
129	6.4	2.8	5.6	2.1 virginica 129

130	7.2	3.0	5.8	1.6 virginica 130
131	7.4	2.8	6.1	1.9 virginica 131
132	7.9	3.8	6.4	2.0 virginica 132
133	6.4	2.8	5.6	2.2 virginica 133
134	6.3	2.8	5.1	1.5 virginica 134
135	6.1	2.6	5.6	1.4 virginica 135
136	7.7	3.0	6.1	2.3 virginica 136
137	6.3	3.4	5.6	2.4 virginica 137
138	6.4	3.1	5.5	1.8 virginica 138
139	6.0	3.0	4.8	1.8 virginica 139
140	6.9	3.1	5.4	2.1 virginica 140
141	6.7	3.1	5.6	2.4 virginica 141
142	6.9	3.1	5.1	2.3 virginica 142
143	5.8	2.7	5.1	1.9 virginica 143
144	6.8	3.2	5.9	2.3 virginica 144
145	6.7	3.3	5.7	2.5 virginica 145
146	6.7	3.0	5.2	2.3 virginica 146
147	6.3	2.5	5.0	1.9 virginica 147
148	6.5	3.0	5.2	2.0 virginica 148
149	6.2	3.4	5.4	2.3 virginica 149
150	5.9	3.0	5.1	1.8 virginica 150
130	species_ind	3.0	3.1	110 V119111100 130
1	setosa_1			
2	setosa_1			
3	setosa_2			
4	setosa_4			
5	setosa_5			
6	setosa_6			
7	setosa_7			
8	setosa_8			
9	setosa_9			
10	setosa_10			
11	setosa_11			
12	setosa_12			
13	setosa_13			
14	setosa_14			
15	setosa_15			
16	setosa_16			
17	setosa_17			
18	setosa_18			
19	setosa_19			
20	setosa_19			
21	setosa_21			
22	setosa_22			
23	setosa_23			
24	setosa_24			
25	setosa_25			
26	setosa_26			
27	setosa_27			
28	setosa_28			
29	setosa_29			
30	setosa_23			
31	setosa_31			
32	setosa_32			
33	setosa_33			
34	setosa_34			
35	setosa_35			
33	36.6030_33			

```
36
         setosa_36
37
         setosa 37
38
         setosa_38
39
         setosa 39
40
         setosa 40
41
         setosa_41
42
         setosa_42
43
         setosa 43
44
         setosa 44
45
         setosa_45
46
         setosa_46
47
         setosa 47
48
         setosa 48
49
         setosa_49
50
         setosa_50
51
     versicolor 51
52
     versicolor_52
53
     versicolor 53
54
     versicolor_54
55
     versicolor 55
     versicolor_56
56
57
     versicolor 57
58
     versicolor_58
59
     versicolor 59
60
     versicolor 60
61
     versicolor_61
62
     versicolor_62
63
     versicolor_63
64
     versicolor 64
65
     versicolor_65
66
     versicolor_66
67
     versicolor_67
68
     versicolor 68
69
     versicolor_69
70
     versicolor_70
71
     versicolor_71
72
     versicolor_72
73
     versicolor_73
74
     versicolor_74
75
     versicolor_75
76
     versicolor 76
77
     versicolor 77
78
     versicolor_78
79
     versicolor_79
80
     versicolor 80
81
     versicolor_81
82
     versicolor_82
83
     versicolor_83
84
     versicolor 84
85
     versicolor_85
86
     versicolor_86
87
     versicolor_87
88
     versicolor_88
89
     versicolor_89
90
     versicolor_90
91
     versicolor_91
92
     versicolor_92
```

```
93
     versicolor 93
94
     versicolor 94
95
    versicolor_95
96
    versicolor 96
97
    versicolor 97
    versicolor_98
98
99
    versicolor 99
100 versicolor 100
101 virginica 101
102 virginica_102
103 virginica 103
104 virginica 104
105 virginica 105
106 virginica_106
107 virginica 107
108 virginica 108
109 virginica_109
110 virginica 110
111 virginica_111
112 virginica 112
113 virginica 113
114 virginica 114
115 virginica_115
116 virginica 116
117 virginica 117
118 virginica_118
119 virginica_119
120 virginica_120
121 virginica_121
122 virginica_122
123 virginica_123
124 virginica_124
125 virginica 125
126 virginica_126
127 virginica 127
128 virginica_128
129 virginica_129
130 virginica 130
131 virginica_131
132 virginica_132
133 virginica 133
134 virginica 134
135 virginica_135
136 virginica_136
137 virginica 137
138 virginica_138
139 virginica_139
140 virginica_140
141 virginica_141
142 virginica_142
143 virginica_143
144 virginica_144
145 virginica_145
146 virginica_146
147 virginica_147
148 virginica_148
```

```
149 virginica_149
150 virginica_150
```

Step 1: Explore the Iris Dataset

As in every case you should be looking at the data first - every time...

Right is the data on iris from a long dataframe

```
overview_plot <- iris_long_df %>%
   ggplot(aes(species, values, color=species)) +
   geom_boxplot() +
   facet_wrap(~variable, scales = "free")
overview_plot
```


What is PCA? Goals and Overview

Principal Component Analysis Goals:

- Variable Reduction: Transform many correlated variables into fewer uncorrelated components
- Data Exploration: Visualize patterns and relationships in high-dimensional data
- Noise Reduction: Focus on the most important sources of variation
- Dimension Reduction: Make complex datasets easier to analyze and interpret

Today's Example: Iris flower measurements - can we reduce 4 measurements to 2-3 components that capture most variation?

The Challenge: 4 Dimensions of Iris Data

High-Dimensional Data Visualization

Principal Component Analysis Goals:

- Variable Reduction: Transform many correlated variables into fewer uncorrelated components
- Data Exploration: Visualize patterns and relationships in high-dimensional data
- Noise Reduction: Focus on the most important sources of variation
- Dimension Reduction: Make complex datasets easier to analyze and interpret

Today's Example: Iris flower measurements - can we reduce 4 measurements to fewer components that capture most variation?

PCA Assumptions - Critical to Check First!

Key Assumptions:

- 1. **Linear relationships** between variables
- 2. No extreme outliers (can distort results)
- 3. Variables should be correlated (if not, PCA won't reduce dimensions)
- 4. Adequate sample size (generally n > 50, preferably n > 100)
- 5. No missing data (complete cases only)
- 6. **Consider standardization** when variables have different scales

Important: PCA works best when original variables are moderately to highly correlated!

Let's check these assumptions with our iris data...

Step 2: Check PCA Assumptions - Correlations

[1] "Correlation Matrix:"

	sepal_length	sepal_width	petal_length	petal_width
sepal_length	1.000	-0.118	0.872	0.818
sepal_width	-0.118	1.000	-0.428	-0.366
petal_length	0.872	-0.428	1.000	0.963
petal_width	0.818	-0.366	0.963	1.000

Step 2: Check PCA Assumptions - Linearity

Pairwise Relationships in Iris Data

Step 2: Check PCA Assumptions - Outliers

Check for Outliers in Iris Variables

Step 3: Standardize the Data

STANDARDIZATION: Making all variables comparable

Why standardize?

Our measurements have different units and scales:

- Sepal length: ranges from ~4-8 cm
- Sepal width: ranges from ~2-4 cm
- Petal length: ranges from ~1-7 cm
- Petal width: ranges from ~0.1-2.5 cm

Without standardization, PCA would be dominated by variables with larger numbers (like petal length) simply because they have bigger values, not because they're more important biologically

What does standardization do?

- Converts each variable to have:
 - ► Mean = 0 (centered at zero)
 - Standard deviation = 1 (same spread)
 - ► This gives all variables equal weight in the analysis

How to interpret standardized values: Example: A sepal length of 5.1 cm might become -0.9 after standardization, meaning it's 0.9 standard deviations below the average sepal length

[1] "Means after standardization (should be ~ 0):"

```
sepal_length sepal_width petal_length petal_width
0 0 0 0
```

[1] "Standard deviations after standardization (should be 1):"

```
sepal_length sepal_width petal_length petal_width

1 1 1 1
```

Step 4: Perform PCA - The Mathematics What is PCA doing?

Principal Component Analysis finds new variables (called components) that capture the most variation in your data. Think of it as finding the "best viewing angles" to see differences between flowers.

The mathematics (simplified):

- PCA rotates your data to find the direction with maximum spread (PC1)
- Then finds the next direction with maximum spread perpendicular to PC1 (PC2)
- Continues until it has as many components as original variables (4 in our case)

Why center = FALSE and scale = FALSE?

We already standardized our data in Step 3, so we tell R not to do it again: - center = FALSE: Don't subtract the mean (we already did) - scale = FALSE: Don't divide by standard deviation (we already did)

What the summary shows:

- Standard deviation: How much variation each component captures
- Proportion of Variance: Percentage of total variation explained by each component
- Cumulative Proportion: Running total of variance explained

```
# Perform PCA on standardized data
iris_pca <- prcomp(iris_scaled, center = FALSE, scale. = FALSE)
# Note: center and scale are FALSE because we already standardized

# Alternative using vegan package
iris_pca_vegan <- rda(iris_scaled)

# Summary of PCA results
summary(iris_pca)</pre>
```

```
Importance of components:

PC1 PC2 PC3 PC4

Standard deviation 1.7084 0.9560 0.38309 0.14393

Proportion of Variance 0.7296 0.2285 0.03669 0.00518

Cumulative Proportion 0.7296 0.9581 0.99482 1.00000
```

Deriving Components: 2D Visualization

How are new uncorrelated components derived? One way to think it is in terms of axis rotation Consider a 2-variable dataset:

Component Derivation: Axis Rotation

Goal is to "rotate the axes" around center of the data "cloud" in such a way that most of the variation lies along the first axis Then find second axis that explains the second-most variation AND is orthogonal to first axis

Component Derivation: Multivariate Extension

Easy to picture in 2D (or even 3D), but harder in multivariate space Practically, components are "extracted" from a covariance of correlation matrix among original variables Will extract as many principal components as original variables

Component Information: Eigenvalues and Eigenvectors

- Get two important pieces of information from PCA: eigenvectors and eigenvalues
- Eigenvalues (latent roots)- how much of the variation is explained by each component?
- Eigenvectors- list of coefficients for original variables. There are p coefficients in an eigenvector and p eigenvectors
- Correlation bw original variables will result in fewer components explaining more variance; variable reduction will fail if original variables are not correlated

Step 4: Understanding Eigenvalues and Variance Understanding Eigenvalues and Variance

What are eigenvalues?

- Eigenvalues tell us how much variation each principal component captures.
- Larger eigenvalues = more important components.

Key terms explained:

- **Eigenvalue**: The amount of variance captured by each component (always positive)
- Proportion of Variance: What percentage of total variation this component explains
- Cumulative Variance: Running total helps us decide how many components we need

How to read the results:

- If PC1 has eigenvalue = 2.9, it captures 2.9 "units" of variance
- If Prop Variance = 0.728, PC1 explains 72.8% of all variation in the data
- If Cumsum_Variance = 0.959 at PC2, the first 2 components together explain 95.9% of variation

Why this matters:

This table helps us decide how many components to keep.

- If 2 components explain 95% of variance, we've successfully reduced 4 variables to 2
- We only lose 5% of information without including the other variables!

```
# Extract eigenvalues (variance explained by each component)
eigenvalues <- iris_pca$sdev^2
prop_variance <- eigenvalues / sum(eigenvalues)
cumsum_variance <- cumsum(prop_variance)

# Create a summary table
pca_summary <- data.frame(
    Component = paste0("PC", 1:length(eigenvalues)),
    Eigenvalue = eigenvalues,
    Prop_Variance = prop_variance,
    Cumsum_Variance = cumsum_variance
)
print("PCA Summary:")</pre>
```

```
[1] "PCA Summary:"
```

```
kable(pca_summary, digits = 3)
```

Component	Eigenvalue	Prop_Variance	Cumsum_Variance
PC1	2.918	0.730	0.730
PC2	0.914	0.229	0.958
PC3	0.147	0.037	0.995
PC4	0.021	0.005	1.000

Step 5: Determine Number of Components - Scree Plot What is a Scree Plot?

A scree plot shows how much variance each component explains, helping us decide how many components we need. The name comes from the geological term "scree" - loose rocks at the base of a cliff - because the plot often looks like a steep cliff followed by rubble.

How to read a Scree Plot:

- Y-axis: Percentage of variance explained by each component
- X-axis: Component number (PC1, PC2, etc.)
- The pattern: Usually shows a steep drop followed by a leveling off

The "Elbow Method":

Look for where the line "bends" or forms an elbow:

• Components before the elbow = important (steep slope)

- Components after the elbow = less important (gentle slope)
- Keep components up to and including the elbow

What to look for in our plot:

- If PC1 explains 70% and PC2 explains 20%, but PC3 only explains 5%, the elbow is at PC2
- This suggests keeping the first 2 components
- The dramatic drop from PC1 to PC2, then gentle decline after, confirms our dimension reduction worked well

Step 5: Component Selection Rules

```
# Eigenvalue > 1 rule (Kaiser criterion)
components_to_keep <- sum(eigenvalues > 1)
print(paste("Components with eigenvalue > 1:", components_to_keep))
```

```
[1] "Components with eigenvalue > 1: 1"
```

```
# Components explaining at least 80% of variance
components_80_percent <- which(cumsum_variance >= 0.80)[1]
print(paste("Components needed for 80% variance:", components_80_percent))
```

```
[1] "Components needed for 80% variance: 2"
```

Step 6: Interpret the Components - LoadingsWhat are Component Loadings

Loadings tell us how much each original variable contributes to each principal component. Think of them as "recipes" that show how to mix your original measurements to create the new components.

How to read the loadings table

- Values range from -1 to +1 (like correlations)
- Large positive values (e.g., 0.8): This variable contributes strongly in the positive direction
- Large negative values (e.g., -0.8): This variable contributes strongly in the negative direction
- Values near 0: This variable doesn't contribute much to this component

Interpreting the patterns:

- If all loadings have similar signs: Component represents overall size (all measurements increase/decrease together)
- **If loadings have mixed signs**: Component represents shape or proportions (some measurements increase while others decrease)
- Dominant variables: Variables with the largest absolute loadings drive that component's meaning

Example interpretation:

If PC1 has all negative loadings around -0.5, it means:

- Flowers with high PC1 scores have small values for ALL measurements
- This component captures "overall flower size"
- The negative sign just indicates direction (could flip signs and interpretation)

```
# Component loadings (how much each original variable contributes)
loadings_df <- data.frame(</pre>
```

```
Variable = rownames(iris_pca$rotation),
PC1 = iris_pca$rotation[, 1],
PC2 = iris_pca$rotation[, 2],
PC3 = iris_pca$rotation[, 3],
PC4 = iris_pca$rotation[, 4]
)
print("Component Loadings:")
```

```
[1] "Component Loadings:"
```

```
loadings_df
```

```
VariablePC1PC2PC3PC4sepal_length0.5210659-0.377417620.71956640.2612863sepal_widthsepal_width-0.2693474-0.92329566-0.2443818-0.1235096petal_lengthpetal_length0.5804131-0.02449161-0.1421264-0.8014492petal_widthpetal_width0.5648565-0.06694199-0.63427270.5235971
```

Step 6: Eigenvector Properties

Key properties of eigenvectors/loadings:

- Unit length: Each eigenvector has length 1 (sum of squares = 1)
- **Orthogonal**: Eigenvectors are perpendicular to each other (dot product = 0)
- Ordered by importance: First eigenvector (PC1) explains most variance

The complete picture:

- **Eigenvectors** = The directions (loadings)
- **Eigenvalues** = The importance of each direction (variance explained)
- Together they fully describe the PCA transformation

Step 6b: Visualization of Component Loadings

What does this plot show?

This is a visual representation of the loadings table, showing how each original variable contributes to PC1 and PC2. It's like a map of how your original measurements relate to the new principal components.

How to read the plot:

- Arrows represent your original variables (sepal length, sepal width, etc.)
- Arrow direction shows which PC the variable contributes to
- Arrow length indicates the strength of contribution (longer = stronger)
- Arrow color shows the overall contribution magnitude (red = highest, blue = lowest)
- The circle represents the maximum possible contribution

Key interpretations from this plot:

- PC1 (horizontal axis, 73% variance):
 - All arrows point roughly left (negative direction)
 - ▶ All variables contribute almost equally to PC1
 - This confirms PC1 represents "overall flower size"

PC2 (vertical axis, 22.9% variance):

- Sepal_width points down (negative)
- Other variables point slightly up (positive)
- This creates a contrast: sepal width vs. everything else
- PC2 captures "flower shape" wide sepals vs. long petals

Loading Plot Interpretation

What the arrow positions tell us:

- Variables pointing in same direction = positively correlated
- Variables at 90° angles = uncorrelated
- Variables pointing opposite directions = negatively correlated

The practical meaning:

- Flowers with high PC1 scores have large values for all measurements
- Flowers with high PC2 scores have narrow sepals but long/wide petals
- The plot confirms our dimension reduction worked we've captured 95.9% of variation in just 2 dimensions!

Step 7: PCA Biplot - The Main Result Key insights from this biplot:

Species separation:

- **Setosa (blue)**: Clearly separated on the left (negative PC1)
- Versicolor (yellow): In the middle
- **Virginica (red)**: On the right (positive PC1)
- PCA successfully separates species without being told about them!

Understanding flower characteristics:

- Setosa flowers: Small overall (negative PC1), relatively wide sepals (positive PC2)
- Virginica flowers: Large overall (positive PC1), especially long petals
- Versicolor flowers: Intermediate in most characteristics

Variable relationships:

- Petal measurements point together → highly correlated
- Sepal width points differently \rightarrow captures different information
- All arrows point right \rightarrow all measurements increase from setosa to virginica

Step 7: PCA Scores Plot - Alternative Visualization

Step 8: Interpret PC1 Results

Understanding PC1 Loadings:

The loadings show how each original variable contributes to PC1:

- **Sepal length: 0.521** Strong positive contribution
- **Sepal width:** -0.269 Moderate negative contribution
- **Petal length: 0.580** Strong positive contribution
- **Petal width: 0.565** Strong positive contribution

```
# What does PC1 represent?
pcl loadings <- iris pca$rotation[, 1]</pre>
print("PC1 Loadings (all variables contribute similarly):")
[1] "PC1 Loadings (all variables contribute similarly):"
round(pcl_loadings, 3)
sepal_length sepal_width petal_length petal_width
       0.521
                                 0.580
                   -0.269
                                               0.565
cat("\nPC1 Interpretation: Overall flower size")
PC1 Interpretation: Overall flower size
cat("\n- All variables have similar negative loadings")
- All variables have similar negative loadings
cat("\n- Higher PC1 values = smaller flowers overall")
- Higher PC1 values = smaller flowers overall
cat("\n- Lower PC1 values = larger flowers overall")
- Lower PC1 values = larger flowers overall
```

PC1 Interpretation: Overall Flower Size

PC1 Interpretation: Overall flower size (with a twist)

Note: The output says "all variables have similar negative loadings" but the actual values show mostly positive loadings. This is likely due to a sign flip - PCA signs can be arbitrary. Let's interpret based on the actual values shown:

- Three variables (sepal length, petal length, petal width) have similar positive loadings (~0.52-0.58)
- Sepal width has a negative loading (-0.269)
- This means PC1 captures flowers where length and width measurements (except sepal width) vary together

What PC1 scores mean:

- Higher PC1 values = Longer petals, longer sepals, wider petals, but narrower sepals
- Lower PC1 values = Shorter petals, shorter sepals, narrower petals, but wider sepals
- PC1 essentially captures "overall flower size except sepal width goes opposite"

Biological interpretation:

PC1 distinguishes between:

- Small flowers with relatively wide sepals (negative PC1) typical of setosa
- Large flowers with relatively narrow sepals (positive PC1) typical of virginica

Step 8: Interpret PC2 Results

Understanding PC2 Loadings:

The loadings show how each original variable contributes to PC2:

- **Sepal length:** -0.377 Moderate negative contribution
- Sepal width: -0.923 Very strong negative contribution
- Petal length: -0.024 Almost no contribution
- **Petal width:** -0.067 Very small negative contribution

```
# What does PC2 represent?
pc2_loadings <- iris_pca$rotation[, 2]
print("PC2 Loadings:")</pre>
```

```
[1] "PC2 Loadings:"
```

```
round(pc2_loadings, 3)
```

```
sepal_length sepal_width petal_length petal_width
-0.377 -0.923 -0.024 -0.067
```

```
cat("\nPC2 Interpretation: Flower shape contrast")
```

```
PC2 Interpretation: Flower shape contrast
```

```
cat("\n- Positive loadings: sepal width")
```

```
- Positive loadings: sepal width

cat("\n- Negative loadings: petal length and width, sepal length")

- Negative loadings: petal length and width, sepal length

cat("\n- Higher PC2 = wider sepals relative to petal size")

- Higher PC2 = wider sepals relative to petal size

cat("\n- Lower PC2 = longer/wider petals relative to sepal width")

- Lower PC2 = longer/wider petals relative to sepal width
```

PC2 Interpretation: Flower Shape Contrast

PC2 Interpretation: Correcting the output

Note: The output says "Positive loadings: sepal width" but the actual value is -0.923 (negative). All loadings are actually negative, with sepal width being the most strongly negative.

What PC2 actually represents:

- All variables have negative loadings, but sepal width is dominant (-0.923)
- Petal measurements contribute very little (-0.024 and -0.067)
- This component is primarily driven by sepal width, with some contribution from sepal length

What PC2 scores mean:

- Higher PC2 values = Smaller measurements overall, especially narrow sepals
- Lower PC2 values = Larger measurements overall, especially wide sepals
- Since sepal width has the strongest loading, PC2 primarily captures sepal width variation

Biological interpretation:

PC2 helps distinguish:

- Flowers with narrow sepals and smaller overall size (positive PC2)
- Flowers with wide sepals and larger overall size (negative PC2)
- This dimension helps separate species that have similar PC1 scores but different sepal proportions

Step 9: How Well Does PCA Work?

```
# Calculate total variance explained by first 2 components
variance_explained_2pc <- sum(prop_variance[1:2])
caption_pca <- paste("Variance explained by first 2 components:", round(variance_explained_2pc
* 100, 1), "%")
# This means we reduced 4 variables to 2 components while retaining most information!</pre>
```

```
# Create a summary plot showing dimension reduction success
tibble(
   Component = factor(paste0("PC", 1:4), levels = paste0("PC", 1:4)),
   Variance = prop_variance * 100,
   Cumulative = cumsum_variance * 100
) %>%
   ggplot(aes(x = Component)) +
   geom_col(aes(y = Variance), fill = "lightblue", alpha = 0.7) +
   geom_line(aes(y = Cumulative, group = 1), color = "red", size = 1) +
   geom_point(aes(y = Cumulative), color = "red", size = 3) +
   labs(title = "PCA Dimension Reduction Success",
        subtitle = "Blue bars = individual variance, Red line = cumulative variance",
        caption = caption_pca,
        x = "Principal Component",
        y = "Percentage of Variance Explained") +
   theme_minimal()
```

Summary: What We Learned

Key Findings:

- 1. Successful dimension reduction: 4 variables \rightarrow 2 components explaining ~96% of variance
- 2. PC1 (72.8% variance): Overall flower size
 - All measurements contribute similarly
 - Separates large from small flowers
- 3. PC2 (23.1% variance): Shape contrast
 - Sepal width vs. petal dimensions
 - Separates flower shape types
- 4. **Species separation**: PCA naturally groups the three iris species based on their morphological differences

PCA Success Criteria Met:

- ✓ Variables were correlated
- ✓ Linear relationships
- √ No major outliers
- ✓ Adequate sample size
- ✓ Clear dimension reduction
- ✓ Interpretable components

When to Use PCA vs. Other Methods

Use PCA when:

- Variables are continuous and correlated
- Goal is dimension reduction or data exploration
- Linear relationships between variables
- Want to remove redundancy in measurements

Consider alternatives when:

- Variables are categorical → use MCA (Multiple Correspondence Analysis)
- Focus on species composition
 → use ordination methods like NMDS
- Want to classify/predict

 use discriminant analysis or machine learning

PCA is excellent for exploring patterns in biological measurements like morphology, physiology, or environmental variables!