Lecture 19 - Logistic Regression

Bill Perry

Lecture 19: Introduction to Logistic Regression

What is Logistic Regression?

Logistic regression is used when: - The response variable is **binary** (yes/no, 1/0, present/absent) - Data follows a **binomial distribution** (not normal) - We want to model the **probability** of an outcome

Today's Example: Lizard Sexual Maturity

We'll explore the relationship between body length and sexual maturity in female lizards - **Response variable**: Sexual maturity (mature: 1 = yes, 0 = no) - **Predictor variable**: Body length in cm - **Question**: Can we predict the probability of sexual maturity from body size?

Key Difference from Linear Regression

- Linear regression: Models the actual values of Y
- Logistic regression: Models the probability of Y = 1
- Uses Generalized Linear Models (GLM) instead of General Linear Models

Step 1: Load and Explore the Data

```
# Load the lizard dataset
lizards_df <- read.csv("data/lizards.csv") %>%
   clean_names()

# First few rows
head(lizards_df)
```

```
length mature
1 10.2 0
2 10.4 0
3 11.8 0
4 12.3 0
5 13.8 0
6 16.9 0
```

Step 2: Initial Data Visualization

Creating a Boxplot

Let's visualize how body length differs between sexually mature and immature lizards:

```
# Create boxplot showing length by maturity status
maturity_boxplot <- ggplot(lizards_df, aes(x = factor(mature), y = length)) +
    geom_boxplot(fill = c("lightblue", "lightcoral")) +
    labs(title = "Lizard Body Length by Sexual Maturity Status",
        x = "Sexual Maturity (0 = Immature, 1 = Mature)",
        y = "Body Length (cm)") +</pre>
```


What do we see?

- There appears to be a relationship between size and sexual maturity
- Mature lizards tend to be longer than immature ones
- But there's overlap not a perfect separation
- This suggests logistic regression might be appropriate

Step 3: Fit the Logistic Regression Model

Using glm() for Logistic Regression

The glm() function is similar to lm() but requires specifying the distribution family:

```
(Dispersion parameter for binomial family taken to be 1)

Null deviance: 60.176 on 43 degrees of freedom
Residual deviance: 34.041 on 42 degrees of freedom
AIC: 38.041

Number of Fisher Scoring iterations: 6
```

Interpreting the Model Output

Coefficients:

- Intercept (β_0): -5.5847 The log-odds when length = 0
- **Slope** (β_1): 0.2503 Change in log-odds for each 1 cm increase in length

P-values:

- Both coefficients are significant (p < 0.05)
- We reject the null hypothesis that $\beta_1 = 0$
- There IS a relationship between length and sexual maturity

Understanding the Slope:

The positive slope (0.2503) indicates: - Longer lizards are more likely to be sexually mature - For each 1 cm increase in length, the log-odds of maturity increase by 0.2503

Step 4: Convert Log-Odds to Odds

Making the Results More Interpretable

Log-odds are hard to interpret. Let's convert to odds:

```
# Extract the slope coefficient
slope_coefficient <- coef(logistic_model)[2]

# Convert log-odds to odds ratio
odds_ratio <- exp(slope_coefficient)
odds_ratio</pre>
```

```
length
1.284388
```

```
# Interpretation
# For every 1 cm increase in length, the odds of being sexually mature
# increase by a factor of 1.284 (or about 28.4%)
```

Step 5: Create the Logistic Regression Plot

Visualizing the Probability Curve

What the S-curve tells us:

- The red line shows how probability changes with length
- Small lizards (<20 cm) have very low probability of being mature
- Large lizards (>40 cm) have very high probability of being mature
- The steepest change occurs around 25-30 cm

Step 6: Making Predictions

Using the Model for Prediction

Let's predict the probability of sexual maturity for specific lizard sizes:

```
1
0.1565304
```

```
1
0.6939292
```

```
1
0.9651551
```

Interpretation:

- A 20 cm lizard has about 14% probability of being sexually mature
- A 30 cm lizard has about 70% probability of being sexually mature
- A 40 cm lizard has about 96% probability of being sexually mature

Step 7: Model Fit Assessment

Calculating Pseudo-R2 Values

Unlike linear regression, logistic regression doesn't have a traditional R². We use pseudo-R² instead:

```
# Calculate pseudo-R2 values using pscl package
pseudo_r2 <- pR2(logistic_model)</pre>
```

```
fitting null model for pseudo-r2
```

```
pseudo_r2
```

```
llh llhNull G2 McFadden r2ML r2CU
-17.0204762 -30.0881077 26.1352630 0.4343122 0.4478763 0.6009400
```

Interpreting Pseudo-R2 Values

The last three values are the pseudo-R² statistics:

- McFadden: Compares model to null model
- r2ML: Maximum likelihood based R2
- r2CU: Cragg-Uhler (Nagelkerke) R²

Values around 0.4-0.5 indicate moderate to good fit. Our model explains approximately 40-50% of the variation in sexual maturity status.

Step 8: Additional Diagnostics

Creating a More Detailed Summary Plot

Observed Data and Model Pre

Points = observed data, Blue line = n

Summary: Key Takeaways

What We Learned:

- 1. Logistic regression models probability of binary outcomes
- 2. Uses glm() with family = binomial
- 3. Coefficients represent changes in log-odds

- 4. Convert to **odds ratios** for interpretation: exp(coefficient)
- 5. Creates S-shaped probability curves
- 6. Use **pseudo-R**² to assess model fit

Our Results:

- Significant positive relationship between body length and sexual maturity
- Each 1 cm increase in length increases odds of maturity by ~28%
- Model explains ~40-50% of variation in maturity status
- Can predict probability of maturity for any given length

When to Use Logistic Regression:

- Binary response variable (0/1, yes/no, success/failure)
- Want to predict probabilities
- Relationships that follow S-shaped curves
- When assumptions of linear regression are violated